Dynamic Movement Primitives (DMPs) are a framework for learning a trajectory from a demonstration. The trajectory can be learned efficiently after only one demonstration, and it is immediate to adapt it to new goal positions and time duration. Moreover, the trajectory is also robust against perturbations. However, obstacle avoidance for DMPs is still an open problem. In this work, we propose an extension of DMPs to support volumetric obstacle avoidance based on the use of superquadric potentials. We show the advantages of this approach when obstacles have known shape, and we extend it to unknown objects using minimal enclosing ellipsoids. A simulation and experiments with a real robot validate the framework, and we make freely available our implementation.
Dynamic movement primitives: volumetric obstacle avoidance
Michele Ginesi;Daniele Meli;Andrea Calanca;Diego Dall'Alba;Nicola Sansonetto;Paolo Fiorini
2019-01-01
Abstract
Dynamic Movement Primitives (DMPs) are a framework for learning a trajectory from a demonstration. The trajectory can be learned efficiently after only one demonstration, and it is immediate to adapt it to new goal positions and time duration. Moreover, the trajectory is also robust against perturbations. However, obstacle avoidance for DMPs is still an open problem. In this work, we propose an extension of DMPs to support volumetric obstacle avoidance based on the use of superquadric potentials. We show the advantages of this approach when obstacles have known shape, and we extend it to unknown objects using minimal enclosing ellipsoids. A simulation and experiments with a real robot validate the framework, and we make freely available our implementation.File | Dimensione | Formato | |
---|---|---|---|
root (2).pdf
accesso aperto
Descrizione: Articolo principale
Tipologia:
Documento in Pre-print
Licenza:
Dominio pubblico
Dimensione
1.21 MB
Formato
Adobe PDF
|
1.21 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.