Accurate state estimation plays a critical role in various applications, such as tracking, regulation, and fault detection in robotic and mechanical systems. Typically, the Kalman–Bucy filter is used as a linear state observer for this purpose. However, real-world robots often exhibit complex behavior, characterized by a combination of dynamics, making it essential to employ hybrid filters. In this context, the Switching Kalman filter stands out as a well-established solution. In this article we aim to generalize the Brownian-Markov Stochastic Model, a hybrid dynamic model for differential-drive wheeled mobile robots, to the case of a mobile robot whose center of mass is not aligned to the wheels axle middle point, and to design a geometric hybrid state estimator by exploiting the Lie groups theory. The Brownian-Markov Stochastic Model features two modes: ‘‘grip’’ and ‘‘slip’’. These modes correspond to ideal grip and lateral slippage, with transitions governed by a state-dependent Markov chain. To validate the proposed switching filter, we conduct MATLAB® simulations of the robot’s motion in a scenario prone to lateral grip loss, comparing the state estimates produced by the switching geometric filter with those obtained using the switching Kalman filter.
Minimum-energy switching geometric filter on lie groups for differential-drive wheeled mobile robots
Vesentini, Federico;Rigo, Damiano;Sansonetto, Nicola;Di Persio, Luca;Muradore, Riccardo
2024-01-01
Abstract
Accurate state estimation plays a critical role in various applications, such as tracking, regulation, and fault detection in robotic and mechanical systems. Typically, the Kalman–Bucy filter is used as a linear state observer for this purpose. However, real-world robots often exhibit complex behavior, characterized by a combination of dynamics, making it essential to employ hybrid filters. In this context, the Switching Kalman filter stands out as a well-established solution. In this article we aim to generalize the Brownian-Markov Stochastic Model, a hybrid dynamic model for differential-drive wheeled mobile robots, to the case of a mobile robot whose center of mass is not aligned to the wheels axle middle point, and to design a geometric hybrid state estimator by exploiting the Lie groups theory. The Brownian-Markov Stochastic Model features two modes: ‘‘grip’’ and ‘‘slip’’. These modes correspond to ideal grip and lateral slippage, with transitions governed by a state-dependent Markov chain. To validate the proposed switching filter, we conduct MATLAB® simulations of the robot’s motion in a scenario prone to lateral grip loss, comparing the state estimates produced by the switching geometric filter with those obtained using the switching Kalman filter.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.