Reinforcement Learning (RL) methods have demonstrated promising results for the automation of subtasks in surgical robotic systems. Since many trial and error attempts are required to learn the optimal control policy, RL agent training can be performed in simulation and the learned behavior can be then deployed in real environments. In this work, we introduce an open-source simulation environment providing support for position based dynamics soft bodies simulation and state-of-the-art RL methods. We demonstrate the capabilities of the proposed framework by training an RL agent based on Proximal Policy Optimization in fat tissue manipulation for tumor exposure during a nephrectomy procedure. Leveraging on a preliminary optimization of the simulation parameters, we show that our agent is able to learn the task on a virtual replica of the anatomical environment. The learned behavior is robust to changes in the initial end-effector position. Furthermore, we show that the learned policy can be directly deployed on the da Vinci Research Kit, which is able to execute the trajectories generated by the RL agent. The proposed simulation environment represents an essential component for the development of next-generation robotic systems, where the interaction with the deformable anatomical environment is involved.

Soft Tissue Simulation Environment to Learn Manipulation Tasks in Autonomous Robotic Surgery

Eleonora Tagliabue
;
Ameya Pore;Diego Dall’Alba;Enrico Magnabosco;Marco Piccinelli;Paolo Fiorini
2020-01-01

Abstract

Reinforcement Learning (RL) methods have demonstrated promising results for the automation of subtasks in surgical robotic systems. Since many trial and error attempts are required to learn the optimal control policy, RL agent training can be performed in simulation and the learned behavior can be then deployed in real environments. In this work, we introduce an open-source simulation environment providing support for position based dynamics soft bodies simulation and state-of-the-art RL methods. We demonstrate the capabilities of the proposed framework by training an RL agent based on Proximal Policy Optimization in fat tissue manipulation for tumor exposure during a nephrectomy procedure. Leveraging on a preliminary optimization of the simulation parameters, we show that our agent is able to learn the task on a virtual replica of the anatomical environment. The learned behavior is robust to changes in the initial end-effector position. Furthermore, we show that the learned policy can be directly deployed on the da Vinci Research Kit, which is able to execute the trajectories generated by the RL agent. The proposed simulation environment represents an essential component for the development of next-generation robotic systems, where the interaction with the deformable anatomical environment is involved.
2020
soft tissue simulation
reinforcement learning
autonomous tissue manipulation
File in questo prodotto:
File Dimensione Formato  
IROS2020_IRIS.pdf

accesso aperto

Tipologia: Documento in Pre-print
Licenza: Creative commons
Dimensione 4.97 MB
Formato Adobe PDF
4.97 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11562/1027625
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact