Natural language annotations and manuals can provide useful procedural information and relations for the highly specialized scenario of autonomous robotic task planning. In this paper, we propose and publicly release AUTOMATE, a pipeline for automatic task knowledge extraction from expert-written domain texts. AUTOMATE integrates semantic sentence classifcation, semantic role labeling, and identifcation of procedural connectors, in order to extract templates of Linear Temporal Logic (LTL) relations that can be directly implemented in any sufciently expressive logic programming formalism for autonomous reasoning, assuming some low-level commonsense and domain-independent knowledge is available. This is the frst work that bridges natural language descriptions of complex LTL relations and the automation of full robotic tasks. Unlike most recent similar works that assume strict language constraints in substantially simplifed domains, we test our pipeline on texts that refect the expressiveness of natural language used in available textbooks and manuals. In fact, we test AUTOMATE in the surgical robotic scenario, defning realistic language constraints based on a publicly available dataset. In the context of two benchmark training tasks with texts constrained as above, we show that automatically extracted LTL templates, after translation to a suitable logic programming paradigm, achieve comparable planning success in reduced time, with respect to logic programs written by expert programmers

Mapping natural language procedures descriptions to linear temporal logic templates: an application in the surgical robotic domain

Marco Bombieri
;
Daniele Meli;Diego Dall’Alba;Marco Rospocher;Paolo Fiorini
2023-01-01

Abstract

Natural language annotations and manuals can provide useful procedural information and relations for the highly specialized scenario of autonomous robotic task planning. In this paper, we propose and publicly release AUTOMATE, a pipeline for automatic task knowledge extraction from expert-written domain texts. AUTOMATE integrates semantic sentence classifcation, semantic role labeling, and identifcation of procedural connectors, in order to extract templates of Linear Temporal Logic (LTL) relations that can be directly implemented in any sufciently expressive logic programming formalism for autonomous reasoning, assuming some low-level commonsense and domain-independent knowledge is available. This is the frst work that bridges natural language descriptions of complex LTL relations and the automation of full robotic tasks. Unlike most recent similar works that assume strict language constraints in substantially simplifed domains, we test our pipeline on texts that refect the expressiveness of natural language used in available textbooks and manuals. In fact, we test AUTOMATE in the surgical robotic scenario, defning realistic language constraints based on a publicly available dataset. In the context of two benchmark training tasks with texts constrained as above, we show that automatically extracted LTL templates, after translation to a suitable logic programming paradigm, achieve comparable planning success in reduced time, with respect to logic programs written by expert programmers
2023
Natural Language Processing, Autonomous Planning, Linear Temporal Logic, Surgical Robotics
File in questo prodotto:
File Dimensione Formato  
Bombieri_et_al_NLP_LTL_2023.pdf

accesso aperto

Tipologia: Documento in Post-print
Licenza: Creative commons
Dimensione 1.28 MB
Formato Adobe PDF
1.28 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11562/1103049
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact