Velocity Obstacle paradigm is one of the most popular and studied decentralized trajectory planning methods for multi-agent systems moving in dynamic environments. It has been successfully used in a multitude of real and simulated scenarios for the collision-free maneuver of ground or aerial mobile robots. In this paper we address the problem of adapting Velocity Obstacles to provide collision-free trajectories also for robotic manipulators with dynamic obstacles in their workspace. Simulation results show the effectiveness of the proposed approach.
Velocity Obstacle-based Trajectory Planner for Two-Link Planar Manipulators
Vesentini, Federico;Muradore, Riccardo
2021-01-01
Abstract
Velocity Obstacle paradigm is one of the most popular and studied decentralized trajectory planning methods for multi-agent systems moving in dynamic environments. It has been successfully used in a multitude of real and simulated scenarios for the collision-free maneuver of ground or aerial mobile robots. In this paper we address the problem of adapting Velocity Obstacles to provide collision-free trajectories also for robotic manipulators with dynamic obstacles in their workspace. Simulation results show the effectiveness of the proposed approach.File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.