Purpose The automatic extraction of knowledge about intervention execution from surgical manuals would be of the utmost importance to develop expert surgical systems and assistants. In this work we assess the feasibility of automatically identifying the sentences of a surgical intervention text containing procedural information, a subtask of the broader goal of extracting intervention workflows from surgical manuals. Methods We frame the problem as a binary classification task. We first introduce a new public dataset of 1958 sentences from robotic surgery texts, manually annotated as procedural or non-procedural. We then apply different classification methods, from classical machine learning algorithms, to more recent neural-network approaches and classification methods exploiting transformers (e.g., BERT, ClinicalBERT). We also analyze the benefits of applying balancing techniques to the dataset. Results The architectures based on neural-networks fed with FastText’s embeddings and the one based on ClinicalBERT outperform all the tested methods, empirically confirming the feasibility of the task. Adopting balancing techniques does not lead to substantial improvements in classification. Conclusion This is the first work experimenting with machine / deep learning algorithms for automatically identifying procedural sentences in surgical texts. It also introduces the first public dataset that can be used for benchmarking different classification methods for the task.
Automatic detection of procedural knowledge in robotic-assisted surgical texts
Marco Bombieri;Marco Rospocher;Diego Dall'Alba;Paolo Fiorini
2021-01-01
Abstract
Purpose The automatic extraction of knowledge about intervention execution from surgical manuals would be of the utmost importance to develop expert surgical systems and assistants. In this work we assess the feasibility of automatically identifying the sentences of a surgical intervention text containing procedural information, a subtask of the broader goal of extracting intervention workflows from surgical manuals. Methods We frame the problem as a binary classification task. We first introduce a new public dataset of 1958 sentences from robotic surgery texts, manually annotated as procedural or non-procedural. We then apply different classification methods, from classical machine learning algorithms, to more recent neural-network approaches and classification methods exploiting transformers (e.g., BERT, ClinicalBERT). We also analyze the benefits of applying balancing techniques to the dataset. Results The architectures based on neural-networks fed with FastText’s embeddings and the one based on ClinicalBERT outperform all the tested methods, empirically confirming the feasibility of the task. Adopting balancing techniques does not lead to substantial improvements in classification. Conclusion This is the first work experimenting with machine / deep learning algorithms for automatically identifying procedural sentences in surgical texts. It also introduces the first public dataset that can be used for benchmarking different classification methods for the task.| File | Dimensione | Formato | |
|---|---|---|---|
| 
									
										
										
										
										
											
												
												
												    
												
											
										
									
									
										
										
											Bombieri2021_Article_AutomaticDetectionOfProcedural.pdf
										
																				
									
										
											 accesso aperto 
											Descrizione: Articolo principale
										 
									
									
									
										
											Tipologia:
											Versione dell'editore
										 
									
									
									
									
										
											Licenza:
											
											
												Creative commons
												
												
													
													
													
												
												
											
										 
									
									
										Dimensione
										413.37 kB
									 
									
										Formato
										Adobe PDF
									 
										
										
								 | 
								413.37 kB | Adobe PDF | Visualizza/Apri | 
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.



