The problem of decomposing a directed graph into strongly connected components (SCCs) is a fundamental graph problem that is inherently present in many scientific and commercial applications. Clearly, there is a strong need for good high-performance, e.g., GPU-accelerated, algorithms to solve it. Unfortunately, among existing GPU-enabled algorithms to solve the problem, there is none that can be considered the best on every graph, disregarding the graph characteristics. Indeed, the choice of the right and most appropriate algorithm to be used is often left to inexperienced users. In this paper, we introduce a novel parametric multi-step scheme to evaluate existing GPU-accelerated algorithms for SCC decomposition in order to alleviate the burden of the choice and to help the user to identify which combination of existing techniques for SCC decomposition would fit an expected use case the most. We support our scheme with an extensive experimental evaluation that dissects correlations between the internal structure of GPU-based algorithms and their performance on various classes of graphs. The measurements confirm that there is no algorithm that would beat all other algorithms in the decomposition on all of the classes of graphs. Our contribution thus represents an important step towards an ultimate solution of automatically adjusted scheme for the GPU-accelerated SCC decomposition.

Parametric Multi-Step Scheme for GPU-Accelerated Graph Decomposition into Strongly Connected Components

ALDEGHERI, STEFANO;Bombieri, Nicola;Busato, Federico;
2017-01-01

Abstract

The problem of decomposing a directed graph into strongly connected components (SCCs) is a fundamental graph problem that is inherently present in many scientific and commercial applications. Clearly, there is a strong need for good high-performance, e.g., GPU-accelerated, algorithms to solve it. Unfortunately, among existing GPU-enabled algorithms to solve the problem, there is none that can be considered the best on every graph, disregarding the graph characteristics. Indeed, the choice of the right and most appropriate algorithm to be used is often left to inexperienced users. In this paper, we introduce a novel parametric multi-step scheme to evaluate existing GPU-accelerated algorithms for SCC decomposition in order to alleviate the burden of the choice and to help the user to identify which combination of existing techniques for SCC decomposition would fit an expected use case the most. We support our scheme with an extensive experimental evaluation that dissects correlations between the internal structure of GPU-based algorithms and their performance on various classes of graphs. The measurements confirm that there is no algorithm that would beat all other algorithms in the decomposition on all of the classes of graphs. Our contribution thus represents an important step towards an ultimate solution of automatically adjusted scheme for the GPU-accelerated SCC decomposition.
2017
strongly connected componentsGPU-accelerated algorithmsparametric multi-step algorithmsperformance evaluation
File in questo prodotto:
File Dimensione Formato  
main.pdf

accesso aperto

Tipologia: Documento in Pre-print
Licenza: Creative commons
Dimensione 315.3 kB
Formato Adobe PDF
315.3 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11562/945946
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 1
social impact