Magnetic resonance imaging (MRI) is a reliable and accurate imaging method for the evaluation of patients with pancreatic ductal adenocarcinoma (PDAC). Diffusion-weighted imaging (DWI) is a relatively recent technological improvement that expanded MRI capabilities, having brought functional aspects into conventional morphologic MRI evaluation. DWI can depict the random diffusion of water molecules within tissues (the so-called Brownian motions). Modifications of water diffusion induced by different factors acting on the extracellular and intracellular spaces, as increased cell density, edema, fibrosis, or altered functionality of cell membranes, can be detected using this MR sequence. The intravoxel incoherent motion (IVIM) model is an advanced DWI technique that consent a separate quantitative evaluation of all the microscopic random motions that contribute to DWI, which are essentially represented by molecular diffusion and blood microcirculation (perfusion). Technological improvements have made possible the routine use of DWI during abdominal MRI study. Several authors have reported that the addition of DWI sequence can be of value for the evaluation of patients with PDAC, especially improving the staging; nevertheless, it is still unclear whether and how DWI could be helpful for identification, characterization, prognostic stratification and follow-up during treatment. The aim of this paper is to review up-to-date literature data regarding the applications of DWI and IVIM to PDACs.

Diffusion-weighted imaging of pancreatic cancer

DE ROBERTIS LOMBARDI, Riccardo
;
Demozzi, Emanuele;Dal Corso, Flavia;BASSI, Claudio;PEDERZOLI, Paolo;D'ONOFRIO, Mirko
2015

Abstract

Magnetic resonance imaging (MRI) is a reliable and accurate imaging method for the evaluation of patients with pancreatic ductal adenocarcinoma (PDAC). Diffusion-weighted imaging (DWI) is a relatively recent technological improvement that expanded MRI capabilities, having brought functional aspects into conventional morphologic MRI evaluation. DWI can depict the random diffusion of water molecules within tissues (the so-called Brownian motions). Modifications of water diffusion induced by different factors acting on the extracellular and intracellular spaces, as increased cell density, edema, fibrosis, or altered functionality of cell membranes, can be detected using this MR sequence. The intravoxel incoherent motion (IVIM) model is an advanced DWI technique that consent a separate quantitative evaluation of all the microscopic random motions that contribute to DWI, which are essentially represented by molecular diffusion and blood microcirculation (perfusion). Technological improvements have made possible the routine use of DWI during abdominal MRI study. Several authors have reported that the addition of DWI sequence can be of value for the evaluation of patients with PDAC, especially improving the staging; nevertheless, it is still unclear whether and how DWI could be helpful for identification, characterization, prognostic stratification and follow-up during treatment. The aim of this paper is to review up-to-date literature data regarding the applications of DWI and IVIM to PDACs.
Diffusion magnetic resonance imaging; Magnetic resonance imaging; Pancreas; Pancreatic ductal carcinoma; Pancreatic neoplasms
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11562/942097
Citazioni
  • ???jsp.display-item.citation.pmc??? 17
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 36
social impact