We perform recommendations for the Social Ridesharing scenario, in which a set of commuters, connected through a social network, arrange one-time rides at short notice. In particular, we focus on how much one should pay for taking a ride with friends. More formally, we propose the first approach that can compute fair coalitional payments that are also stable according to the game-theoretic concept of the kernel for systems with thousands of agents in real-world scenarios. Our tests, based on real datasets for both spatial (GeoLife) and social data (Twitter), show that our approach is significantly faster than the state-of-the-art (up to 84 times), allowing us to compute stable payments for 2000 agents in 50 minutes. We also develop a parallel version of our approach, which achieves a near-optimal speed-up in the number of processors used. Finally, our empirical analysis reveals new insights into the relationship between payments incurred by a user by virtue of its position in its social network and its role (rider or driver).

Recommending Fair Payments for Large-Scale Social Ridesharing

Bistaffa, Filippo;FARINELLI, Alessandro;
2015-01-01

Abstract

We perform recommendations for the Social Ridesharing scenario, in which a set of commuters, connected through a social network, arrange one-time rides at short notice. In particular, we focus on how much one should pay for taking a ride with friends. More formally, we propose the first approach that can compute fair coalitional payments that are also stable according to the game-theoretic concept of the kernel for systems with thousands of agents in real-world scenarios. Our tests, based on real datasets for both spatial (GeoLife) and social data (Twitter), show that our approach is significantly faster than the state-of-the-art (up to 84 times), allowing us to compute stable payments for 2000 agents in 50 minutes. We also develop a parallel version of our approach, which achieves a near-optimal speed-up in the number of processors used. Finally, our empirical analysis reveals new insights into the relationship between payments incurred by a user by virtue of its position in its social network and its role (rider or driver).
978-145033692-5
Algorithm Scalability, Innovative Applications, Coalition Formation, Social Networks, Ridesharing
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11562/927023
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 16
  • ???jsp.display-item.citation.isi??? ND
social impact