We consider the Social Ridesharing (SR) problem, where a set of commuters, connected through a social network, arrange one-time rides at short notice. In particular, we focus on the associated optimisation problem of forming cars to minimise the travel cost of the overall system modelling such problem as a graph constrained coalition formation (GCCF) problem, where the set of feasible coalitions is restricted by a graph (i.e., the social network). Moreover, we significantly extend the state of the art algorithm for GCCF, i.e., the CFSS algorithm, to solve our GCCF model of the SR problem. Our empirical evaluation uses a real dataset for both spatial (GeoLife) and social data (Twitter), to validate the applicability of our approach in a realistic application scenario. Empirical results show that our approach computes optimal solutions for systems of medium scale (up to 100 agents) providing significant cost reductions (up to -36.22%). Moreover, we can provide approximate solutions for very large systems (i.e., up to 2000 agents) and good quality guarantees (i.e., with an approximation ratio of 1.41 in the worst case) within minutes (i.e., 100 seconds).
Sharing Rides with Friends: A Coalition Formation Algorithm for Ridesharing
Bistaffa, Filippo;FARINELLI, Alessandro;
2015-01-01
Abstract
We consider the Social Ridesharing (SR) problem, where a set of commuters, connected through a social network, arrange one-time rides at short notice. In particular, we focus on the associated optimisation problem of forming cars to minimise the travel cost of the overall system modelling such problem as a graph constrained coalition formation (GCCF) problem, where the set of feasible coalitions is restricted by a graph (i.e., the social network). Moreover, we significantly extend the state of the art algorithm for GCCF, i.e., the CFSS algorithm, to solve our GCCF model of the SR problem. Our empirical evaluation uses a real dataset for both spatial (GeoLife) and social data (Twitter), to validate the applicability of our approach in a realistic application scenario. Empirical results show that our approach computes optimal solutions for systems of medium scale (up to 100 agents) providing significant cost reductions (up to -36.22%). Moreover, we can provide approximate solutions for very large systems (i.e., up to 2000 agents) and good quality guarantees (i.e., with an approximation ratio of 1.41 in the worst case) within minutes (i.e., 100 seconds).I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.