We present a methodology for the deployment of the max-sum algorithm, a well known decentralised algorithm for coordinating autonomous agents, for problems related to situational awareness. In these settings, unmanned autonomous vehicles are deployed to collect information about an unknown environment. Our methodology then helps identify the choices that need to be made to apply the algorithm to these problems. Next, we present a case study where the methodology is used to develop a system for disaster management in which a team of unmanned aerial vehicles coordinate to provide the first responders of the area of a disaster with live aerial imagery. To evaluate this system, we deploy it on two unmanned hexacopters in a variety of scenarios. Our tests show that the system performs well when confronted with the dynamism and the heterogeneity of the real world.
A Methodology for Deploying the Max-Sum Algorithm and a Case Study on Unmanned Aerial Vehicles
FARINELLI, Alessandro;
2012-01-01
Abstract
We present a methodology for the deployment of the max-sum algorithm, a well known decentralised algorithm for coordinating autonomous agents, for problems related to situational awareness. In these settings, unmanned autonomous vehicles are deployed to collect information about an unknown environment. Our methodology then helps identify the choices that need to be made to apply the algorithm to these problems. Next, we present a case study where the methodology is used to develop a system for disaster management in which a team of unmanned aerial vehicles coordinate to provide the first responders of the area of a disaster with live aerial imagery. To evaluate this system, we deploy it on two unmanned hexacopters in a variety of scenarios. Our tests show that the system performs well when confronted with the dynamism and the heterogeneity of the real world.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.