We develop an efficient algorithm for computing pure strategy Nash equilibria that satisfy various criteria (such as the utilitarian or Nash--Bernoulli social welfare functions) in games with sparse interaction structure. Our algorithm, called Valued Nash Propagation (VNP), integrates the optimisation problem of maximising a criterion with the constraint satisfaction problem of finding a game's equilibria to construct a criterion that defines a c-semiring. Given a suitably compact game structure, this criterion can be efficiently optimised using message-passing. To this end, we first show that VNP is complete in games whose interaction structure forms a hypertree. Then, we go on to provide theoretic and empirical results justifying its use on games with arbitrary structure; in particular, we show that it computes the optimum >82% of the time and otherwise selects an equilibrium that is always within 2% of the optimum on average.

A Distributed Algorithm for Optimising over Pure Strategy Nash Equilibria

FARINELLI, Alessandro;
2010-01-01

Abstract

We develop an efficient algorithm for computing pure strategy Nash equilibria that satisfy various criteria (such as the utilitarian or Nash--Bernoulli social welfare functions) in games with sparse interaction structure. Our algorithm, called Valued Nash Propagation (VNP), integrates the optimisation problem of maximising a criterion with the constraint satisfaction problem of finding a game's equilibria to construct a criterion that defines a c-semiring. Given a suitably compact game structure, this criterion can be efficiently optimised using message-passing. To this end, we first show that VNP is complete in games whose interaction structure forms a hypertree. Then, we go on to provide theoretic and empirical results justifying its use on games with arbitrary structure; in particular, we show that it computes the optimum >82% of the time and otherwise selects an equilibrium that is always within 2% of the optimum on average.
2010
9781577354635
Max-Sum; Game Theory; Multi-Agent Systems
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11562/346579
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 6
social impact