Thirty-six samples, including fecal specimens, dry feedstuffs, raw and processed pork meat products, and dry fermented sausages, were collected from two production chains of swine meat commodities and analyzed for the presence of 11 antibiotic resistance (AR) genes. Specific PCR assays carried out on DNA extracted directly from the samples revealed a high incidence of the genes tet(K) (80.5%), ermB (66.7%), and tet(M) (66.7%). Feces and feedstuffs gave the largest number of positive amplifications. To elucidate the contribution of enterococci to the occurrence and spread of AR, 146 resistant enterococci were isolated, and their identity, genetic fingerprints, and AR gene profiles were determined by means of molecular techniques. Enterococcus faecalis and Enterococcus faecium were the predominant isolated species (43.8 and 38.4%, respectively); other Enterococcus species identified were E. durans (8.9%), E. hirae (2.7%), E. gallinarum (2.1%), E. mundtii (2.1%), and E. casseliflavus (2.1%). A number of isolates displayed a complex AR gene profile comprising up to four different resistance determinants. The genes tet(M) and ermB were highly diffused, being present in 86.9 and 84.9%, respectively, of the isolates. The application of amplified fragment length polymorphism fingerprinting was particularly valuable to monitor the resistant enterococcal isolates along the production chain and to individuate steps in which contamination might occur. In fact, isolates of E. faecalis and E. faecium showing the same amplified fragment length polymorphism profile and AR gene pattern were detected in samples taken at different steps of the food chain suggesting three cases of bacterial clonal spread.
Contribution of enterococci to the spread of antibiotic resistance in the production chain of swine meat commodities
RIZZOTTI, Lucia;SIMEONI, Desj;DELLAGLIO, Franco;TORRIANI, Sandra
2005-01-01
Abstract
Thirty-six samples, including fecal specimens, dry feedstuffs, raw and processed pork meat products, and dry fermented sausages, were collected from two production chains of swine meat commodities and analyzed for the presence of 11 antibiotic resistance (AR) genes. Specific PCR assays carried out on DNA extracted directly from the samples revealed a high incidence of the genes tet(K) (80.5%), ermB (66.7%), and tet(M) (66.7%). Feces and feedstuffs gave the largest number of positive amplifications. To elucidate the contribution of enterococci to the occurrence and spread of AR, 146 resistant enterococci were isolated, and their identity, genetic fingerprints, and AR gene profiles were determined by means of molecular techniques. Enterococcus faecalis and Enterococcus faecium were the predominant isolated species (43.8 and 38.4%, respectively); other Enterococcus species identified were E. durans (8.9%), E. hirae (2.7%), E. gallinarum (2.1%), E. mundtii (2.1%), and E. casseliflavus (2.1%). A number of isolates displayed a complex AR gene profile comprising up to four different resistance determinants. The genes tet(M) and ermB were highly diffused, being present in 86.9 and 84.9%, respectively, of the isolates. The application of amplified fragment length polymorphism fingerprinting was particularly valuable to monitor the resistant enterococcal isolates along the production chain and to individuate steps in which contamination might occur. In fact, isolates of E. faecalis and E. faecium showing the same amplified fragment length polymorphism profile and AR gene pattern were detected in samples taken at different steps of the food chain suggesting three cases of bacterial clonal spread.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.