In the era of intelligent manufacturing, anomaly detection has become essential for maintaining quality control on modern production lines. However, while many existing models show promising performance, they are often too large, computationally demanding, and impractical to deploy on resource-constrained embedded devices that can be easily installed on the production lines of Small and Medium Enter-prises (SMEs). To bridge this gap, we present KairosAD, a novel supervised approach that uses the power of the Mobile Segment Anything Model (MobileSAM) for image-based anomaly detection. KairosAD has been evaluated on the two well-known industrial anomaly detection datasets, i.e., MVTec-AD and ViSA. The results show that KairosAD requires 78% fewer parameters and boasts a 4× faster inference time compared to the leading state-of-the-art model, while maintaining comparable AUROC performance. We deployed KairosAD on two embedded devices, the NVIDIA Jetson NX, and the NVIDIA Jetson AGX. Finally, KairosAD was successfully installed and tested on the real production line of the Industrial Computer Engineering Laboratory (ICE Lab) at the University of Verona. The code is available at https://github.com/intelligolabs/KairosAD.

KairosAD: A SAM-Based Model for Industrial Anomaly Detection on Embedded Devices

Khan, Uzair
;
Fummi, Franco;Capogrosso, Luigi
2025-01-01

Abstract

In the era of intelligent manufacturing, anomaly detection has become essential for maintaining quality control on modern production lines. However, while many existing models show promising performance, they are often too large, computationally demanding, and impractical to deploy on resource-constrained embedded devices that can be easily installed on the production lines of Small and Medium Enter-prises (SMEs). To bridge this gap, we present KairosAD, a novel supervised approach that uses the power of the Mobile Segment Anything Model (MobileSAM) for image-based anomaly detection. KairosAD has been evaluated on the two well-known industrial anomaly detection datasets, i.e., MVTec-AD and ViSA. The results show that KairosAD requires 78% fewer parameters and boasts a 4× faster inference time compared to the leading state-of-the-art model, while maintaining comparable AUROC performance. We deployed KairosAD on two embedded devices, the NVIDIA Jetson NX, and the NVIDIA Jetson AGX. Finally, KairosAD was successfully installed and tested on the real production line of the Industrial Computer Engineering Laboratory (ICE Lab) at the University of Verona. The code is available at https://github.com/intelligolabs/KairosAD.
2025
9783032101846
Industrial Anomaly Detection, Efficient Deep Learning, Visual Foundation Models, Embedded Systems
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11562/1178908
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact