The fast fashion industry suffers from significant environmental impacts due to overproduction and unsold inventory. Accurately predicting sales volumes for unreleased products could significantly improve efficiency and resource utilization. However, predicting performance for entirely new items is challenging due to the lack of historical data and rapidly changing trends, and existing deterministic models often struggle with domain shifts when encountering items outside the training data distribution. The recently proposed diffusion models address this issue using a continuous-time diffusion process. This allows us to simulate how new items are adopted, reducing the impact of domain shift challenges faced by deterministic models. As a result, in this paper, we propose MDiFF: a novel two-step multimodal diffusion models-based pipeline for New Fashion Product Performance Forecasting (NFPPF). First, we use a score-based diffusion model to predict multiple future sales for different clothes over time. Then, we refine these multiple predictions with a lightweight Multi-layer Perceptron (MLP) to get the final forecast. MDiFF leverages the strengths of both architectures, resulting in the most accurate and efficient forecasting system for the fast-fashion industry at the state-of-the-art. The code can be found at https://github.com/intelligolabs/MDiFF.

MDiFF: Exploiting Multimodal Score-Based Diffusion Models for New Fashion Product Performance Forecasting

Avogaro, Andrea;Capogrosso, Luigi;Fummi, Franco;Cristani, Marco
2024-01-01

Abstract

The fast fashion industry suffers from significant environmental impacts due to overproduction and unsold inventory. Accurately predicting sales volumes for unreleased products could significantly improve efficiency and resource utilization. However, predicting performance for entirely new items is challenging due to the lack of historical data and rapidly changing trends, and existing deterministic models often struggle with domain shifts when encountering items outside the training data distribution. The recently proposed diffusion models address this issue using a continuous-time diffusion process. This allows us to simulate how new items are adopted, reducing the impact of domain shift challenges faced by deterministic models. As a result, in this paper, we propose MDiFF: a novel two-step multimodal diffusion models-based pipeline for New Fashion Product Performance Forecasting (NFPPF). First, we use a score-based diffusion model to predict multiple future sales for different clothes over time. Then, we refine these multiple predictions with a lightweight Multi-layer Perceptron (MLP) to get the final forecast. MDiFF leverages the strengths of both architectures, resulting in the most accurate and efficient forecasting system for the fast-fashion industry at the state-of-the-art. The code can be found at https://github.com/intelligolabs/MDiFF.
2024
9783031915680
New Fashion Product Performance Forecasting, Diffusion Models, Multimodal Learning
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11562/1163091
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact