Split Computing (SC) enables deploying a Deep Neural Network (DNN) on edge devices with limited resources by splitting the workload between the edge device and a remote server. However, relying on a server can be expensive, requires a reliable network, and introduces unpredictable latency. Existing solutions for on-device DNNs deployment often sacrifice accuracy for efficiency. In this paper, we study how to use the concepts from SC to split a DNN for executing on the same device without compromising accuracy. In other words, we propose Local-Only Split Computing (LO-SC), a new approach to split a DNN for execution entirely on the edge device while maintaining high accuracy and predictable latency. We formalize LO-SC as a MixedInteger Linear Problem (MILP) problem and solve it using a multi-constrained ordered knapsack algorithm. The proposed method achieves promising results on both synthetic and realworld data, offering a viable alternative for accurately deploying DNNs on resource-constrained edge devices. The source code is available at https://github.com/intelligolabs/LO-SC.

LO-SC: Local-Only Split Computing for Accurate Deep Learning on Edge Devices

Capogrosso, Luigi
;
Fraccaroli, Enrico;Cristani, Marco;Fummi, Franco;Chakraborty, Samarjit
2025-01-01

Abstract

Split Computing (SC) enables deploying a Deep Neural Network (DNN) on edge devices with limited resources by splitting the workload between the edge device and a remote server. However, relying on a server can be expensive, requires a reliable network, and introduces unpredictable latency. Existing solutions for on-device DNNs deployment often sacrifice accuracy for efficiency. In this paper, we study how to use the concepts from SC to split a DNN for executing on the same device without compromising accuracy. In other words, we propose Local-Only Split Computing (LO-SC), a new approach to split a DNN for execution entirely on the edge device while maintaining high accuracy and predictable latency. We formalize LO-SC as a MixedInteger Linear Problem (MILP) problem and solve it using a multi-constrained ordered knapsack algorithm. The proposed method achieves promising results on both synthetic and realworld data, offering a viable alternative for accurately deploying DNNs on resource-constrained edge devices. The source code is available at https://github.com/intelligolabs/LO-SC.
2025
Deep Neural Networks
Edge Device
Split Computing
Knapsack Problem
File in questo prodotto:
File Dimensione Formato  
OPEN_2024_VLSID_LO_SC_Local_only_Split_Computing_for_Accurate_Deep_Learning_on_Edge_Devices.pdf

accesso aperto

Tipologia: Versione dell'editore
Licenza: Copyright dell'editore
Dimensione 251.24 kB
Formato Adobe PDF
251.24 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11562/1156847
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact