Soft pneumatic network (Pneu-net) actuators are frequently used to achieve sophisticated movements, but they face challenges in producing both bending and twisting motions concurrently. In this paper, we present a new Pneu-net twisting and bending actuator (PTBA) design that enables them to perform complex motions. We achieved this by adjusting the chamber angle, ranging from 15 to 75 degrees, to optimize the bending and twisting movements through finite element analysis and experimental verification. We also investigated the variation trends in bending and twisting motions and determined the actuator's workspace and maximum grasping force for a variety of objects with different shapes, materials, and sizes. Our findings suggest that PTBA is a promising candidate for advanced applications requiring intricate and bioinspired movements. This new design method offers a path toward achieving these goals.
Design of Soft Pneumatic Actuator with Two Oblique Chambers for Coupled Bending and Twisting Movements
Visentin, Francesco;
2023-01-01
Abstract
Soft pneumatic network (Pneu-net) actuators are frequently used to achieve sophisticated movements, but they face challenges in producing both bending and twisting motions concurrently. In this paper, we present a new Pneu-net twisting and bending actuator (PTBA) design that enables them to perform complex motions. We achieved this by adjusting the chamber angle, ranging from 15 to 75 degrees, to optimize the bending and twisting movements through finite element analysis and experimental verification. We also investigated the variation trends in bending and twisting motions and determined the actuator's workspace and maximum grasping force for a variety of objects with different shapes, materials, and sizes. Our findings suggest that PTBA is a promising candidate for advanced applications requiring intricate and bioinspired movements. This new design method offers a path toward achieving these goals.File | Dimensione | Formato | |
---|---|---|---|
actuators-12-00446.pdf
accesso aperto
Tipologia:
Versione dell'editore
Licenza:
Creative commons
Dimensione
4.38 MB
Formato
Adobe PDF
|
4.38 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.