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Abstract: Soft pneumatic network (Pneu-net) actuators are frequently used to achieve sophisticated
movements, but they face challenges in producing both bending and twisting motions concurrently.
In this paper, we present a new Pneu-net twisting and bending actuator (PTBA) design that enables
them to perform complex motions. We achieved this by adjusting the chamber angle, ranging from
15 to 75 degrees, to optimize the bending and twisting movements through finite element analysis
and experimental verification. We also investigated the variation trends in bending and twisting
motions and determined the actuator’s workspace and maximum grasping force for a variety of
objects with different shapes, materials, and sizes. Our findings suggest that PTBA is a promising
candidate for advanced applications requiring intricate and bioinspired movements. This new design
method offers a path toward achieving these goals.

Keywords: Pneu-net actuator; bending and twisting motion; finite element analysis; soft actuator

1. Introduction

Animals are capable of moving their bodies through the activation of specific muscles
in response to various stimuli. This remarkable ability is essential for performing a wide
range of behaviors, from simple movements such as turning or bending to complex actions
like running or flying. In rigid-bodied animals with skeletal structures, the muscles can
contract against the bones, acting as levers to amplify and direct forces. In soft-bodied
animals that lack rigid skeletal structures, muscles can only contract against fluids or tissues
that cannot be compressed, leading to either stiffness or the deformation of the body. The
morphological arrangement of the muscles grants animals the capability to implement
bending and twisting movements needed to implement complex tasks.

The field of soft robotics focuses on the design and development of soft, flexible
robots with the aim of emulating these movements. Research on soft robots relies heavily
on bioinspiration, or the imitation of nature, as researchers aim to create more efficient,
adaptive, and robust robots by studying natural systems. The last decade has seen the
extensive development of soft robots capable of grasping [1], manipulating [2], growing [3],
creeping [4], crawling [5], swimming [6], and jumping [7]. Compliant materials are com-
monly used to construct actuators for soft robots, including silicone rubbers [8], shape
memory polymers [9], shape memory alloys [10], electroactive polymers [11], and hydro-
gels [12]. The actuators can be operated through a variety of stimuli, including pressurized
fluids [2], temperature changes [9,10], electric fields [13,14], and chemical reactions [7].
Soft pneumatic actuators (SPAs) are among the most used for various applications due to
their numerous advantages, including their ability to perform a wide range of motions
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through simple inputs, as well as their lightweight properties, low material costs, and high
fabrication efficiency [15].

An important feature of SPAs is their integrated bending and twisting motions in three
dimensions, which allows for greater dexterity when controlling the actuation mode [16,17].
Two are the main approaches to developing SPAs are the use of fibers to the actuator
wall [18–22] and the design of a pneumatic network (Pneu-net) [23–26]. An actuator with a
fiber reinforcement is typically made up of an elastomer body with a monolithic chamber
and fibers arranged helically, and an alternate flexible layer [18]. This is possible in fiber-
reinforced actuators using a set of fibers arranged at different angles. Each configuration
can perform either twisting or bending, and these can also be combined to obtain the
sum of the different motions. A detailed analysis was conducted by Connolly et al. [19]
to investigate the effect of fiber angle on actuator motion, and an analytical model was
developed to facilitate the design process. A mathematical model for the motions exhibited
by deformable cylindrical actuators was proposed in the early works of Hirai et al. [16].
By combining parallel fibers and using an additional fiber, Moser et al. [20] developed a
snake-like, fiber-reinforced actuator. Using McKibben’s artificial muscles, Peng et al. [27]
developed a wearable support device called Funabot-Suit that is based on human muscle
architecture. A soft pipe robot with three longitudinally arranged elastic ribbons and
a McKibben pneumatic actuator was created by Lin et al. [28] to mimic the serpentine
behavior of a snake. The robot can move forward by relying on the intermittent bending of
the elastic ribbons, which are activated by a single actuator.

A Pneu-net actuator, instead, relies on a series of connected chambers that work as a
network [29]. Pneu-net actuators achieve extension motions due to internal pressure, which
inflates their chambers. Due to the presence of a non-extensible layer, a Pneu-net actuator
can achieve large amplitude bending motions. In fact, Pneu-net actuators can produce great
deformations from a single source of pressure; however, their geometric parameters have a
significant impact on their ability to bend. Due to this, a growing interest has been shown
in the behavior of the Pneu-net actuator with respect to its design parameters [30–32]. Sun
et al. [33] proposed an alternative method for achieving helical movement within soft
pneumatic actuators by circumferentially shifting the strain-constraining layer. To achieve
coupled motions of bending and twisting, an actuator using a Pneu-net should use oblique
chambers. The first design created by Ilievski et al. [34] was an embedded network of
channels that, when actuated, curled in the form of a helix. According to Gorissen et al. [35],
the twisting actuator could be created by combining two opposite bending motions, each
of which was realized through a series of angular voids. Chengru Jiang et al. assembled
several Pneu-net actuators so that the shape of the actuators would be deformed in a
manner similar to the arms of an octopus [36].

Currently, studies focus on changing the design parameters of the entire actuator
or a single section of the actuator. In fact, different designs and geometries of Pneu-net
actuators may result in different deformations. It is possible for Pneu-net to bend if there is
a straight-line distance between the chambers [23,37]; however, if the distances are angled,
new deformations, such as spiral motion, may occur [36,38–41].

In this paper, we present the design, simulation, and characterization of a Pneu-net
actuator that can generate coupled bending and bidirectional twisting motions, thanks to
the use of a double array of oblique pneumatic chambers. Finite element analysis (FEA)
was used to simulate the motions of the actuator and to determine its workspace on the
variation in the design parameters. Based on the simulation analysis, an actuator with
compartments, suitable for grasping purposes, was fabricated using a simple molding
process. A full characterization of the developed prototype was carried out and the results
were compared with the output of the simulations. Grasping capabilities were evaluated
on a wide range of objects of different sizes and weight, and they were shown to be able
to retrieve the objects not only by holding them while bending around, but also using a
twisting movement, providing a larger contact area, and adapting to the geometric features
of target objects more effectively. Using simulations and experiments, we demonstrate that
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our new actuator design may guide the design of Pneu-net actuators for a wider range of
applications.

2. Materials and Methods
Design and Simulation

The Pneu-net chamber is usually rectangular in shape and the actuator produces
planar movement [42]. Oblique chambers are used to introduce twisting capabilities to
the actuators [39]. In this study, we coupled two arrays of oblique chambers into a single
actuator (Figure 1A) to achieve bidirectional twisting and bending. The design parameters,
and in particular the chamber angle θ, were investigated to analyze the behavior of the
actuator (Figure 1B). Changing θ (in our investigation, from 15◦ to 75◦ with a 15◦ step)
results in different working spaces of the actuator as a result of the applied pressure to the
two pneumatic chambers. Design parameters and in particular the chamber angle θ are
reported in Table 1.

For this investigation, we used a finite element model with the Solid Mechanics module
of COMSOL Multiphysics 6.0. Since the material that was used to create the actuator is
silicon-based (Dragon Skin 20), we used the hyper-elastic coefficients of the incompressible
Yeoh strain energy functions [43]. A free tetrahedral mesh, employing normal element size
and physics-controlled sequence type, was used to mesh the geometry of the actuator. For
the chamber angles of 75, 60, 45, 30, and 15, the total number of domain elements were
20,441,19,749,19,207,18,356, and 16,277, respectively. Gravity and, consequently, the weight
of the actuator were considered in the simulations (Dragon Skin 20 density is 1080 kg/m3).
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Figure 1. Schematic model the Pneu-net combination-twisting-and-bending actuator (PTBA). (A) The
parameters of designing the soft pneumatic actuator. (B) Schematic models of the actuators with
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Table 1. Parameter value for the design of the simulated actuators.

Symbol Value

L 260 mm
H 20 mm
W 25 mm
f 10 mm
fi 4 mm
d 1.5 mm
t0 2 mm
ti 1.5 mm
l 15.8 mm
l0 14.8 mm

The base of the actuator, where air input tubes are located, is fixed in the XY plane
with +Z aligned with the gravity direction (Figure 2). By selecting boundary conditions in
this manner, gravity has no effect on the initial state of the actuator. For each inner channel
of the actuator, two sets of boundary selections are defined for applying the boundary load
as static pressure perpendicular to the desired inner surfaces.
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Figure 2. (A) An illustration of the geometry of the actuator, the location of the fixed constraint, and
the direction of gravity. (B) Cross–section shows the position of right and left channels in the actuator.
(C) The location of the contact points is defined throughout the actuator. (D) The reference point
is positioned at the free end of the actuator and the pressure–displacement output is compared to
this point.

3. Results
3.1. Simulations

As a result of the large deformation of the actuator under higher pressures, some of
the outer surfaces between the chambers come into contact with each other. To address this
behavior, two sets of outer surfaces were defined as source and destination boundaries,
and a direct contact method was considered between these boundaries. Applying the same
pressure in both channels results in the actuator bending, while applying pressure in only
one channel leads to a twist. Figure 3 shows the resulting actuator behavior resulting from
setting the air pressure to 10, 30, 50, and 80 kPa. As shown in the figure, the actuator bends
under the influence of balanced air pressures in the channels. Instead, the twisting is caused
by applying the same pressure values in one channel and keeping the other not actuated.
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Figure 3. (Top) Bending due to applying equal air pressure in both channels (80 kPa). (Bottom) Twist-
ing due to an asymmetric air pressure application (one channel at 80 kPa and the other at 0).

3.2. Parameter Optimization

Starting with the simulation data, we analyzed the results to select an optimized
version to develop. The ideal design should have both good performance in bending and
twisting motion, allowing the use of the actuator in different situations.

Starting with the bending, we extracted the central line of the actuator and plotted the
deformation as a function of the applied pressure. Figure 4 shows the results of the analysis.
As the results suggest, chamber angles greater than 45◦ do not show any deformation, even
with the maximum pressure (80 kPa) applied. The three remaining configurations, instead,
achieved clear two-dimensional bending, resulting in large deformations (Figure 4A).
Specifically, the 15◦ and 30◦ angled actuators bent up to 265◦; instead, the 45◦ angled one
could bend up to 176◦ (Figures 4B and 3, top).
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Figure 4. Performance of the actuators’ bending. (A) Maximum bending as a function of the different
test chamber angles. The bold lines show the motion of the reference point (tip of the actuator) when
increasing the pressure from 0 to 80 kPa. Dot–dashed lines, instead, show the final deformation of the
actuator when pressurized at 80 kPa. (B) Maximum bending angle achieved by the actuators when
pressurized at 80 kPa. The 60◦ and 75◦ angled actuators do not perform substantial motions to move
from their at–rest configuration.

A similar result (Figure 5) was obtained with the twisting experiments. However, in
this case, the 60◦ and 75◦ angled actuators produced a visible deformation when pressur-
ized. Despite this, the results are not comparable with the other configurations since the
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total twisting angle was lower than 12◦ for both the cases (Figure 5B). As in the bending
case, the 15◦ and 30◦ angled actuators overperformed in terms of deformations (Figure 5A).
The 15◦ angled one, especially, degenerated in a three-dimensional bending-like configura-
tion, achieving in a total bending of 315◦. On the contrary, the 45◦ angled one resulted in a
torsional motion which did not close (angle lower than 180◦) but extended along the length
of the actuator.
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Figure 5. Performance of the actuators’ twist motion. (A) Maximum deformation as a function of
the different test chamber angles. The bold lines show the motion of the reference point (tip of the
actuator) while increasing the pressure from 0 to 80 kPa. Dot–dashed lines, instead, show the final
deformation of the actuator when pressurized to 80 kPa. (B) Maximum bending angle achieved
by the actuators when pressurized at 80 kPa. The 60◦ and 75◦ angled actuators do not perform
substantial motions to move from their at–rest configuration.

This effect is even more visible considering the maximum contraction of the actuator
with respect to the applied pressure. As shown in Figure 6A, the torsional motion of the 15◦

and 30◦ angled actuators resulted in a total contraction of the workspace up to 77%, with
a large drop even at a lower pressure (40–50 kPa). The 45◦ angled one, instead, was only
shortened by 26% while performing a total twist of 120◦. The 60◦ and 75◦ angled actuators
underperformed with respect to the other configurations, not providing enough torsion
(less than 12◦) to be used in grasping applications.
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Figure 6. (A) Contraction of the actuator with respect to the applied pressure. The larger the chamber
angle, the higher the achievable contraction rate. This is not always a positive result since the twisting
motion can degenerate in a three–dimensional bending around the fixed point. (B) Bending angle (at
80 kPa) plotted against the actuator length.
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Considering the advantages of the different configurations, we selected the 45◦ angled
version to be the optimal solution for a versatile but effective actuator. This is because it
can easily achieve approximately 180◦ bending without intersecting with its own body.
Additionally, the ability to twist while protracting its body along its central line allows for
more complex behavior.

3.3. Manufacturing

The fabrication process was based on direct casting using 3D-printed molds. We
designed the molds in Solidworks (Solid Works 2017, Dassault Systems SolidWorks Corp,
Waltham, MA, USA) and printed them using a Fused Deposition Machine (FDM) 3D printer
(Creality CR–10, Shenzhen, China). Two of the molds were assembled to form the upper
part of the actuator, while a third one was used to cast the bottom layer. For the material,
we selected Dragon Skin 20 (Smooth-On Inc., San Francisco, CA, USA). Its two-component
silicone was mixed and defoamed before being poured into the molds. After curing, the
two parts of the actuator were removed from the molds and then connected with a thin
layer of the same material. Figure 7 depicts the steps needed for the casting of the actuator.

Actuators 2023, 12, x FOR PEER REVIEW 7 of 11 
 

 

 
Figure 6. (A) Contraction of the actuator with respect to the applied pressure. The larger the 
chamber angle, the higher the achievable contraction rate. This is not always a positive result since 
the twisting motion can degenerate in a three–dimensional bending around the fixed point. (B) 
Bending angle (at 80 kPa) plotted against the actuator length. 

3.3. Manufacturing 
The fabrication process was based on direct casting using 3D-printed molds. We 

designed the molds in Solidworks (Solid Works 2017, Dassault Systems SolidWorks Corp, 
Waltham, MA, USA) and printed them using a Fused Deposition Machine (FDM) 3D 
printer (Creality CR–10, Shenzhen, China). Two of the molds were assembled to form the 
upper part of the actuator, while a third one was used to cast the bottom layer. For the 
material, we selected Dragon Skin 20 (Smooth-On Inc., San Francisco, CA, USA). Its two-
component silicone was mixed and defoamed before being poured into the molds. After 
curing, the two parts of the actuator were removed from the molds and then connected 
with a thin layer of the same material. Figure 7 depicts the steps needed for the casting of 
the actuator. 

 
Figure 7. Schematic of the manufacturing process of two-degrees-of-freedom Pneu-net actuator. 

3.4. Workspace Analysis 
To assess the results of the simulation and to verify the performance of the develop 

actuator, we evaluated its workspace by pressurizing each chamber independently and 
then together. For the range of pressure, we selected values between 0 and 80 kPa with a 
fixed step of 10 kPa. For a low range of pressures (up to 30 kPa), the effects on the actuator 
are negligible both in the simulation and in the prototype. Appreciable results are in the 
range of 70–80 kPa. We found that an optimal value for a fast and reliable motion of the 

Figure 7. Schematic of the manufacturing process of two-degrees-of-freedom Pneu-net actuator.

3.4. Workspace Analysis

To assess the results of the simulation and to verify the performance of the develop
actuator, we evaluated its workspace by pressurizing each chamber independently and
then together. For the range of pressure, we selected values between 0 and 80 kPa with a
fixed step of 10 kPa. For a low range of pressures (up to 30 kPa), the effects on the actuator
are negligible both in the simulation and in the prototype. Appreciable results are in the
range of 70–80 kPa. We found that an optimal value for a fast and reliable motion of the
actuator is 80 kPa; thus, to extract the workspace, we selected this value as the reference to
obtain the maximum displacement of the actuator. Results are presented in Figure 8.

3.5. Grasping Force

We tested the grasping capability of the developed soft actuator by fixing one end
as shown in Figure 9. and leaving the rest of the body free to grasp a target object. As a
sample of complex shapes, we selected four objects to be grasped: plastic and glass bottles,
a plastic cup, a plastic vase, and a large filament spool. Each object had a different weight
and size and would require a specific tool to properly grasp it. However, with the proposed
actuator, we could manage the grasping of all the objects by pressurizing both the chambers
with 80 kPa, obtaining a helical structure that was attached to the object. Depending the
shape of the object, the strategy of grasping is different. For example, a large filament spool
must be grasped by activating both channels (bending) to create maximum contact, while
it is better to twist around the object to pick up the bottle or flowerpot.
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workplace: front (YZ plane), side (XZ plane), and bottom (XY plane).

Actuators 2023, 12, x FOR PEER REVIEW 8 of 11 
 

 

actuator is 80 kPa; thus, to extract the workspace, we selected this value as the reference 
to obtain the maximum displacement of the actuator. Results are presented in Figure 8. 

 
Figure 8. The result of the workspace analysis. (Top) The computed workspace for the 45° angled 
actuator. The different colors in the images are the plotted value of the tracked reference point (tip) 
of the actuator under different pressure configurations (see legend in the picture). The grayed area, 
instead, is the computed workspace using the simulation data. (Bottom) Three views of the same 
workplace: front (YZ plane), side (XZ plane), and bottom (XY plane). 

3.5. Grasping Force 
We tested the grasping capability of the developed soft actuator by fixing one end as 

shown in Figure 9. and leaving the rest of the body free to grasp a target object. As a 
sample of complex shapes, we selected four objects to be grasped: plastic and glass bottles, 
a plastic cup, a plastic vase, and a large filament spool. Each object had a different weight 
and size and would require a specific tool to properly grasp it. However, with the 
proposed actuator, we could manage the grasping of all the objects by pressurizing both 
the chambers with 80 kPa, obtaining a helical structure that was attached to the object. 
Depending the shape of the object, the strategy of grasping is different. For example, a 
large filament spool must be grasped by activating both channels (bending) to create 
maximum contact, while it is better to twist around the object to pick up the bottle or 
flowerpot. 

 
Figure 9. The experimental setup (A) and the grasped object during the force measurements (B–F). 

Figure 9. The experimental setup (A) and the grasped object during the force measurements (B–F).

During the experiment, we connected each object to a linear stage machine (Z005,
Zwick/Roell, Ulm, Germany) which has a loadcell (Xforce-P, 1 kN, Zwick/Roell). The
linear stage was programmed to move upwards by 150 mm while pulling the object from
the grasp of the actuator at a constant speed of 5 mm/s. Depending on the size of the object
and its weight, the time and the force needed to remove the object from the grasp change.
We measured a peak grasping force of 12 N for the spool, which was grasped by twisting
the actuator around the central part. For all the other objects, we achieved a mean grasping
force of 2.23 N with peaks of 3.85 N when grasping the objects by bending around them.
Figure 10 shows the results of the experiment.
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4. Conclusions and Discussion

In this paper, we present an innovative design of a soft pneumatic actuator known as
the Soft Pneu-net, which exhibits a unique combination of twisting and bending capabilities.
Through a meticulous analysis using the finite element method (FEM), we thoroughly
examined the behavior of the actuator across various chamber angles, ultimately identifying
the most effective configurations for achieving versatile grasping motions on a diverse
array of objects.

Our primary objective was to develop an actuator that excels in both bending and
twisting movements, thereby opening up new possibilities for a wide range of applications.
To accomplish this, we conducted a detailed investigation into the deformation patterns
of the actuator’s central line, carefully studying its response to varying pressure levels.
Notably, our findings showcased that chamber angles below 45◦ exhibited no deformation
even at maximum pressure (80 kPa). However, configurations with angles of 45◦, 30◦, and
15◦ exhibited significant two-dimensional bending with remarkable deformations. This
trend was consistent in the twisting experiments as well, further validating our observations
(see Figure 5).

Drawing upon the advantages offered by different configurations, we concluded that
the 45◦ angled version of the actuator represents a highly versatile and efficient solution.
Leveraging the simulation data, we determined the actuator’s workspace and successfully
manufactured the actuator with the chosen 45◦ angle. Additionally, we conducted a
comprehensive series of tests involving objects with diverse sizes, materials, and shapes to
thoroughly evaluate the actuator’s grasping force.

The actuator demonstrated performance with a peak grasping force of 3.5 N and a
mean grasping force of 2.23 N through simple coiling, exceeding our initial expectations.
Moreover, the twisting actuation demonstrated exceptional strength, yielding a peak force
of over 12 N. These findings not only underline the unique capabilities of the Soft Pneu-net
actuator but also offer novel insights into its potential for performing complex movements
and grasping a wide range of objects. The novelty of this study lies in the development of
a novel actuator design that combines both twisting and bending functionalities. These
findings hold substantial implications for the design and development of soft robotic
systems, marking a significant step toward their widespread application in diverse fields.
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