: STING is a molecule involved in immune reactions against double-stranded DNA fragments, released in infective and neoplastic diseases, whose role in the interactions between immune and neoplastic cells in clear cell renal cell carcinoma has not been studied yet. We investigated the immunohistochemical expression of STING in a series of 146 clear-cell renal cell carcinomas and correlated it with the main pathological prognostic factors. Furthermore, tumoral inflammatory infiltrate was evaluated and studied for the subpopulations of lymphocytes. Expression of STING was observed in 36% (53/146) of the samples, more frequently in high-grade (G3-G4) tumors (48%,43/90) and recurrent/metastatic ones (75%, 24/32) than in low grade (G1-G2) and indolent neoplasms (16%, 9/55). STING staining correlated with parameters of aggressive behavior, including coagulative granular necrosis (p = 0.001), stage (p < 0.001), and development of metastases (p < 0.001). Among prognostic parameters, STING immune expression reached an independent statistical significance (p = 0.029) in multivariable analysis, along with the stage and the presence of coagulative granular necrosis. About tumor immune-environment, no significant statistical association has been demonstrated between tumor-infiltrating lymphocytes and STING. Our results provide novel insights regarding the role of STING in aggressive clear cell renal cell carcinomas, suggesting its adoption as a prognostic marker and a potentially targetable molecule for specific immunotherapies.
STING is a prognostic factor related to tumor necrosis, sarcomatoid dedifferentiation, and distant metastasis in clear cell renal cell carcinoma
	
	
	
		
		
		
		
		
	
	
	
	
	
	
	
	
		
		
		
		
		
			
			
			
		
		
		
		
			
			
				
				
					
					
					
					
						
							
						
						
					
				
				
				
				
				
				
				
				
				
				
				
			
			
		
			
			
				
				
					
					
					
					
						
							
						
						
					
				
				
				
				
				
				
				
				
				
				
				
			
			
		
			
			
				
				
					
					
					
					
						
						
							
							
						
					
				
				
				
				
				
				
				
				
				
				
				
			
			
		
			
			
				
				
					
					
					
					
						
						
							
							
						
					
				
				
				
				
				
				
				
				
				
				
				
			
			
		
			
			
				
				
					
					
					
					
						
							
						
						
					
				
				
				
				
				
				
				
				
				
				
				
			
			
		
			
			
				
				
					
					
					
					
						
							
						
						
					
				
				
				
				
				
				
				
				
				
				
				
			
			
		
			
			
				
				
					
					
					
					
						
						
							
							
						
					
				
				
				
				
				
				
				
				
				
				
				
			
			
		
			
			
				
				
					
					
					
					
						
						
							
							
						
					
				
				
				
				
				
				
				
				
				
				
				
			
			
		
			
			
				
				
					
					
					
					
						
							
						
						
					
				
				
				
				
				
				
				
				
				
				
				
			
			
		
			
			
				
				
					
					
					
					
						
						
							
							
						
					
				
				
				
				
				
				
				
				
				
				
				
			
			
		
			
			
				
				
					
					
					
					
						
						
							
							
						
					
				
				
				
				
				
				
				
				
				
				
				
			
			
		
			
			
				
				
					
					
					
					
						
							
						
						
					
				
				
				
				
				
				
				
				
				
				
				
			
			
		
			
			
				
				
					
					
					
					
						
							
						
						
					
				
				
				
				
				
				
				
				
				
				
				
			
			
		
			
			
				
				
					
					
					
					
						
							
						
						
					
				
				
				
				
				
				
				
				
				
				
				
			
			
		
		
		
		
	
Marletta, Stefano;Caliò, Anna;Brunelli, Matteo;Pedron, Serena;Princiotta, Alessandro;Antonelli, Alessandro;Martignoni, Guido
;Gobbo, Stefano
	
		
		
	
			2023-01-01
Abstract
: STING is a molecule involved in immune reactions against double-stranded DNA fragments, released in infective and neoplastic diseases, whose role in the interactions between immune and neoplastic cells in clear cell renal cell carcinoma has not been studied yet. We investigated the immunohistochemical expression of STING in a series of 146 clear-cell renal cell carcinomas and correlated it with the main pathological prognostic factors. Furthermore, tumoral inflammatory infiltrate was evaluated and studied for the subpopulations of lymphocytes. Expression of STING was observed in 36% (53/146) of the samples, more frequently in high-grade (G3-G4) tumors (48%,43/90) and recurrent/metastatic ones (75%, 24/32) than in low grade (G1-G2) and indolent neoplasms (16%, 9/55). STING staining correlated with parameters of aggressive behavior, including coagulative granular necrosis (p = 0.001), stage (p < 0.001), and development of metastases (p < 0.001). Among prognostic parameters, STING immune expression reached an independent statistical significance (p = 0.029) in multivariable analysis, along with the stage and the presence of coagulative granular necrosis. About tumor immune-environment, no significant statistical association has been demonstrated between tumor-infiltrating lymphocytes and STING. Our results provide novel insights regarding the role of STING in aggressive clear cell renal cell carcinomas, suggesting its adoption as a prognostic marker and a potentially targetable molecule for specific immunotherapies.| File | Dimensione | Formato | |
|---|---|---|---|
| 
									
										
										
										
										
											
												
												
												    
												
											
										
									
									
										
										
											VirchArch2023.pdf
										
																				
									
										
											 accesso aperto 
											Tipologia:
											Versione dell'editore
										 
									
									
									
									
										
											Licenza:
											
											
												Creative commons
												
												
													
													
													
												
												
											
										 
									
									
										Dimensione
										1.68 MB
									 
									
										Formato
										Adobe PDF
									 
										
										
								 | 
								1.68 MB | Adobe PDF | Visualizza/Apri | 
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.



