Partially Observable Monte-Carlo Planning (POMCP) is a powerful online algorithm that can generate online policies for large Partially Observable Markov Decision Processes. The lack of an explicit representation of the policy, however, hinders interpretability. In this work, we present a MAX-SMT based methodology to iteratively explore local properties of the policy. Our approach generates a compact and informative representation that describes the system under investigation.
Policy Interpretation for Partially Observable Monte-Carlo Planning: A Rule-Based Approach
G. Mazzi;A. Castellini;A. Farinelli
2021-01-01
Abstract
Partially Observable Monte-Carlo Planning (POMCP) is a powerful online algorithm that can generate online policies for large Partially Observable Markov Decision Processes. The lack of an explicit representation of the policy, however, hinders interpretability. In this work, we present a MAX-SMT based methodology to iteratively explore local properties of the policy. Our approach generates a compact and informative representation that describes the system under investigation.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
2021_AIRO2021_PolicyInterpretation(Mazzi).pdf
accesso aperto
Descrizione: Articolo principale
Tipologia:
Versione dell'editore
Licenza:
Dominio pubblico
Dimensione
474.13 kB
Formato
Adobe PDF
|
474.13 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.