The current energy scenario requires actions towards the reduction of energy consumption and the use of renewable resources. In this context, a microgrid is a self-sustained network that can operate connected to the smart grid or in isolation. The long-term scheduling of on/off cycles of devices is a critical problem that has been commonly addressed by centralized approaches. In this work, we propose a novel agent-based method to solve the long-term scheduling problem as a distributed constraint optimization problem (DCOP) by modelling future system configurations rather than reacting to changes. Moreover, with respect to approaches based on decentralised reinforcement learning, we can directly encode system-wide hard constraints (such as for example the Kirchhoff law) which are not easy to represent in a factored representation of the problem. We compare different multi-agent DCOP algorithms showing that the proposed method can find optimal/near-optimal solutions for a specific case study

Distributed Constrained Optimization Towards Effective Agent-Based Microgrid Energy Resource Management

Farinelli, Alessandro;
2019-01-01

Abstract

The current energy scenario requires actions towards the reduction of energy consumption and the use of renewable resources. In this context, a microgrid is a self-sustained network that can operate connected to the smart grid or in isolation. The long-term scheduling of on/off cycles of devices is a critical problem that has been commonly addressed by centralized approaches. In this work, we propose a novel agent-based method to solve the long-term scheduling problem as a distributed constraint optimization problem (DCOP) by modelling future system configurations rather than reacting to changes. Moreover, with respect to approaches based on decentralised reinforcement learning, we can directly encode system-wide hard constraints (such as for example the Kirchhoff law) which are not easy to represent in a factored representation of the problem. We compare different multi-agent DCOP algorithms showing that the proposed method can find optimal/near-optimal solutions for a specific case study
2019
978-3-030-30240-5
Multi agent systems, Constrained optimization, Electric power transmission networks, Intelligent agents, Distributed optimization.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11562/1017348
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact