Uncertainty is unavoidable in modeling dynamical systems and it may be represented mathematically by differential inclusions. In the past, we proposed an algorithm to compute validated solutions of differential inclusions; here we provide several theoretical improvements to the algorithm, including its extension to piecewise constant and sinu- soidal approximations of uncertain inputs, updates on the affine approx- imation bounds and a generalized formula for the analytical error. In addition, we implemented the methodology in Ariadne, a library for the verification of continuous and hybrid systems. Then we evaluated ten systems with varying degrees of nonlinearity, number of variables and uncertain inputs. The results are hereby compared with two state-of- the-art approaches to time-varying uncertainties in nonlinear systems.
Rigorous continuous evolution of uncertain systems
Luca Geretti;ZIVANOVIC, Sanja;COLLINS, Pieter John;Davide Bresolin;Tiziano Villa
2019-01-01
Abstract
Uncertainty is unavoidable in modeling dynamical systems and it may be represented mathematically by differential inclusions. In the past, we proposed an algorithm to compute validated solutions of differential inclusions; here we provide several theoretical improvements to the algorithm, including its extension to piecewise constant and sinu- soidal approximations of uncertain inputs, updates on the affine approx- imation bounds and a generalized formula for the analytical error. In addition, we implemented the methodology in Ariadne, a library for the verification of continuous and hybrid systems. Then we evaluated ten systems with varying degrees of nonlinearity, number of variables and uncertain inputs. The results are hereby compared with two state-of- the-art approaches to time-varying uncertainties in nonlinear systems.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.