Over the last two decades, a significant body of research has established a link between cannabis use and psychotic outcomes. In this study, we aim to propose a novel symbiotic machine learning and statistical approach to pattern detection and to developing predictive models for the onset of first-episode psychosis. The data used has been gathered from real cases in cooperation with a medical research institution, and comprises a wide set of variables including demographic, drug-related, as well as several variables specifically related to the cannabis use. Our approach is built upon several machine learning techniques whose predictive models have been optimised in a computationally intensive framework. The ability of these models to predict first-episode psychosis has been extensively tested through large scale Monte Carlo simulations. Our results show that Boosted Classification Trees outperform other models in this context, and have significant predictive ability despite a large number of missing values in the data. Furthermore, we extended our approach by further investigating how different patterns of cannabis use relate to new cases of psychosis, via association analysis and bayesian techniques.

A prediction modelling and pattern detection approach for the first-episode psychosis associated to cannabis use

Colizzi, M;
2016-01-01

Abstract

Over the last two decades, a significant body of research has established a link between cannabis use and psychotic outcomes. In this study, we aim to propose a novel symbiotic machine learning and statistical approach to pattern detection and to developing predictive models for the onset of first-episode psychosis. The data used has been gathered from real cases in cooperation with a medical research institution, and comprises a wide set of variables including demographic, drug-related, as well as several variables specifically related to the cannabis use. Our approach is built upon several machine learning techniques whose predictive models have been optimised in a computationally intensive framework. The ability of these models to predict first-episode psychosis has been extensively tested through large scale Monte Carlo simulations. Our results show that Boosted Classification Trees outperform other models in this context, and have significant predictive ability despite a large number of missing values in the data. Furthermore, we extended our approach by further investigating how different patterns of cannabis use relate to new cases of psychosis, via association analysis and bayesian techniques.
2016
Predicting first-episode psychosis; Cannabis use; Precision medicine; Prediction modelling; Classification; Monte Carlo simulation; Association analysis; Bayesian inference
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11562/995736
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 7
social impact