Social Networking is one of the major technological phenomena of the Web 2.0, with hundreds of millions of people participating. Social networks enable a form of self expression for users, and help them to socialize and share content with other users. In spite of the fact that content sharing represents one of the prominent features of existing Social Network sites, Social Networks yet do not support any mechanism for collaborative management of privacy settings for shared content. In this paper, we model the problem of collaborative enforcement of privacy policies on shared data by using game theory. In particular, we propose a solution that offers automated ways to share images based on an extended notion of content ownership. Building upon the Clarke-Tax mechanism, we describe a simple mechanism that promotes truthfulness, and that rewards users who promote co-ownership. We integrate our design with inference techniques that free the users from the burden of manually selecting privacy preferences for each picture. To the best of our knowledge this is the first time such a protection mechanism for Social Networking has been proposed. In the paper, we also show a proof-of-concept application, which we implemented in the context of Facebook, one of today's most popular social networks. We show that supporting these type of solutions is not also feasible, but can be implemented through a minimal increase in overhead to end-users.

Collective privacy management in social networks

Paci, Federica
2009-01-01

Abstract

Social Networking is one of the major technological phenomena of the Web 2.0, with hundreds of millions of people participating. Social networks enable a form of self expression for users, and help them to socialize and share content with other users. In spite of the fact that content sharing represents one of the prominent features of existing Social Network sites, Social Networks yet do not support any mechanism for collaborative management of privacy settings for shared content. In this paper, we model the problem of collaborative enforcement of privacy policies on shared data by using game theory. In particular, we propose a solution that offers automated ways to share images based on an extended notion of content ownership. Building upon the Clarke-Tax mechanism, we describe a simple mechanism that promotes truthfulness, and that rewards users who promote co-ownership. We integrate our design with inference techniques that free the users from the burden of manually selecting privacy preferences for each picture. To the best of our knowledge this is the first time such a protection mechanism for Social Networking has been proposed. In the paper, we also show a proof-of-concept application, which we implemented in the context of Facebook, one of today's most popular social networks. We show that supporting these type of solutions is not also feasible, but can be implemented through a minimal increase in overhead to end-users.
2009
9781605584874
social network, privacy, game theory
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11562/993312
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 169
  • ???jsp.display-item.citation.isi??? ND
social impact