The signaling cascade induced by the interaction of erythropoietin (EPO) with its receptor (EPO-R) is a key event of erythropoiesis. We present here data indicating that Fyn, a Src-family-kinase, participates in the EPO signaling-pathway, since Fyn-/- mice exhibit reduced Tyr-phosphorylation of EPO-R and decreased STAT5-activity. The importance of Fyn in erythropoiesis is also supported by the blunted responsiveness of Fyn-/- mice to stress erythropoiesis. Fyn-/- mouse erythroblasts adapt to reactive oxygen species (ROS) by activating the redox-related-transcription-factor Nrf2. However, since Fyn is a physiologic repressor of Nrf2, absence of Fyn resulted in persistent-activation of Nrf2 and accumulation of nonfunctional proteins. ROS-induced over-activation of Jak2-Akt-mTOR-pathway and repression of autophagy with perturbation of lysosomal-clearance were also noted. Treatment with Rapamycin, a mTOR-inhibitor and autophagy activator, ameliorates Fyn-/- mouse baseline erythropoiesis and erythropoietic response to oxidative-stress. These findings identify a novel multimodal action of Fyn in the regulation of normal and stress erythropoiesis.

Fyn kinase is a novel modulator of erythropoietin signaling and stress erythropoiesis.

Beneduce, Elisabetta;Matte A;MBIANDJEU TOYA, SERGE CEDRICK;TOLOSANO, EMANUELA;Federti E;Siciliano A;De Franceschi L.
2019-01-01

Abstract

The signaling cascade induced by the interaction of erythropoietin (EPO) with its receptor (EPO-R) is a key event of erythropoiesis. We present here data indicating that Fyn, a Src-family-kinase, participates in the EPO signaling-pathway, since Fyn-/- mice exhibit reduced Tyr-phosphorylation of EPO-R and decreased STAT5-activity. The importance of Fyn in erythropoiesis is also supported by the blunted responsiveness of Fyn-/- mice to stress erythropoiesis. Fyn-/- mouse erythroblasts adapt to reactive oxygen species (ROS) by activating the redox-related-transcription-factor Nrf2. However, since Fyn is a physiologic repressor of Nrf2, absence of Fyn resulted in persistent-activation of Nrf2 and accumulation of nonfunctional proteins. ROS-induced over-activation of Jak2-Akt-mTOR-pathway and repression of autophagy with perturbation of lysosomal-clearance were also noted. Treatment with Rapamycin, a mTOR-inhibitor and autophagy activator, ameliorates Fyn-/- mouse baseline erythropoiesis and erythropoietic response to oxidative-stress. These findings identify a novel multimodal action of Fyn in the regulation of normal and stress erythropoiesis.
2019
kinase, erythropoiesis, oxidation
File in questo prodotto:
File Dimensione Formato  
Beneduce_et_al-2019-American_Journal_of_Hematology.pdf

accesso aperto

Tipologia: Documento in Post-print
Licenza: Dominio pubblico
Dimensione 3.1 MB
Formato Adobe PDF
3.1 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11562/993105
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 25
  • ???jsp.display-item.citation.isi??? ND
social impact