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Abstract
The signaling cascade induced by the interaction of erythropoietin (EPO) with its receptor

(EPO-R) is a key event of erythropoiesis. We present here data indicating that Fyn, a Src-family-

kinase, participates in the EPO signaling-pathway, since Fyn−/− mice exhibit reduced

Tyr-phosphorylation of EPO-R and decreased STAT5-activity. The importance of Fyn in erythro-

poiesis is also supported by the blunted responsiveness of Fyn−/− mice to stress erythropoiesis.

Fyn−/− mouse erythroblasts adapt to reactive oxygen species (ROS) by activating the redox-

related-transcription-factor Nrf2. However, since Fyn is a physiologic repressor of Nrf2, absence

of Fyn resulted in persistent-activation of Nrf2 and accumulation of nonfunctional proteins.

ROS-induced over-activation of Jak2-Akt-mTOR-pathway and repression of autophagy with

perturbation of lysosomal-clearance were also noted. Treatment with Rapamycin, a mTOR-

inhibitor and autophagy activator, ameliorates Fyn−/− mouse baseline erythropoiesis and eryth-

ropoietic response to oxidative-stress. These findings identify a novel multimodal action of Fyn

in the regulation of normal and stress erythropoiesis.

1 | INTRODUCTION

Erythropoiesis is a complex multistep process during which committed

erythroid progenitors undergo terminal differentiation to produce cir-

culating mature red cells. Erythroid differentiation is characterized by

the production of reactive oxygen species (ROS) in response to eryth-

ropoietin (EPO) and by the large amount of iron imported into the

cells for heme biosynthesis.1 During erythropoiesis, ROS could func-

tion as second messenger by modulating intracellular signaling path-

ways. EPO activates a signaling cascade, involving Jak2, as the

primary kinase, and Lyn, a Tyr-kinase of the Src family (SFK), as sec-

ondary kinase.2–4 These two kinases target STAT5 transcription fac-

tor, one of the key master transcription regulators involved in

erythroid maturation events.2–5

Previous studies have shown that the mice genetically lacking Lyn

(Lyn−/−) display reduced STAT5 activation and defective response to

phenylhydrazine- (PHZ) induced stress erythropoiesis.2–4 Fyn, is

another member of the SFKs that is also expressed in hematopoietic

cells.6–10 Fyn has been invoked as an additional regulatory kinase for

the canonical thrombopoietin/Jak2 pathway in megakaryopoiesis.11 In

addition, Fyn has been shown to target STAT5 and to participate to

STAT5 activation in mast-cells in response to FCRI engagement.8 Fur-

thermore, Fyn intersects different intracellular signaling pathways

such as Toll like receptor in macrophages or in T cells12,13 and partici-

pates to the regulation of the redox sensitive transcriptional factor

Nrf2.14–16 Following acute phase response, Fyn switches-off active

Nrf2, triggering its exit from the nucleus and degradation.14–17 In ery-

throid maturation events, the activation of Nrf2 is crucial to support

stress erythropoiesis induced by the oxidant, PHZ, and in modulating

ineffective erythropoiesis in β-thalassemic mice.18,19 In other cellular

models, it has been shown that impairment of Nrf2 post-induction

regulation results in perturbation of cell homeostasis and in accumula-

tion of poly-ubiquitylated protein aggregates due to deregulated

autophagy.16 Autophagy is activated in response to different cellular
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stresses to ensure cell survival and ensure the clearance of the dam-

aged proteins.18,19 We recently showed that in chorea-acanthocytosis

the impairment of autophagy promotes accumulation of proteins,

resulting in engulfment of the cells and in perturbation of erythropoie-

sis combined with increased oxidative stress.20

In present study, we explored the role of Fyn in regulating nor-

mal and stress erythropoiesis. We show that in addition to Jak2

and Lyn, Fyn is an additional kinase involved in EPO signaling cas-

cade by targeting STAT5 activation. The absence of Fyn reduces

the efficiency of the EPO signal and promotes the generation of

ROS and the over-activation of Jak2-Akt-mTOR pathway, with

repression of autophagy. The absence of Fyn also results in persis-

tent activation of Nrf2 and accumulation of damaged proteins. This

is further amplified by the blockage of autophagy mediated by

mTOR activation, which markedly perturbs the response to stress

erythropoiesis induced by either phenylhydrazine (PHZ) or Doxo-

rubicin. In Fyn−/− mice, the rescue experiments with Rapamycin,

an mTOR inhibitor and autophagy activator, co-administrated to

PHZ further validated the importance of autophagy as adaptive

mechanism to stress erythropoiesis in presence of perturbation of

EPO cascade.

2 | METHODS

2.1 | Mouse strains and design of the study

The Institutional Animal Experimental Committee of University of

Verona (CIRSAL) and the Italian Ministry of Health approved the

experimental protocols. Two-month old female wild-type (WT) and

Fyn−/− mice were studied. Where indicated, WT and Fyn−/− mice

were treated with EPO (10 U/mouse/day for 5 days by intraperito-

neal injection),3 or Phenylhydrazine (PHZ: 40 mg/kg on day 0 by

intraperitoneal injection)19 or Doxorubicin (DOXO: 0.25 mg/kg on

day 0 by intraperitoneal injection)21 to study stress erythropoiesis.

Rapamycin was administrated at the dosage of 10 mg/kg/d by

intraperitoneal injection for 1 week, then mice were analyzed. In

experiments with PHZ co-administration, Rapamycin was given at

the dosage of 10 mg/kg/d by intraperitoneal injection 1 day before

PHZ administration (40 mg/kg body; single dose at day 0) and then

Rapamycin was maintained for additional 14 days. N-

Acetylcysteine (NAC, 100 mg/kg body; intraperitoneally injected)

was administrated for 3 weeks as antioxidant treatment.18,19 In

mouse strains, hematological parameters, red cell indices and retic-

ulocyte count were evaluated at baseline and at different time

points (6, 8, and 11 days after EPO injection; at 2, 4, 8, and 14 days

after PHZ injection; at 3, 6, and 9 days after DOXO injection; at

2, 4, 8, 14 days after Rapamycin plus PHZ injection) as previously

reported.22,23 Blood was collected with retro-orbital venipuncture

in anesthetized mice using heparinized microcapillary tubes. Hema-

tological parameters were evaluated on a Siemens Hematology

Analyzer (ADVIA 2120). Hematocrit and hemoglobin were manually

determined.24,25

2.2 | Flow cytometric analysis of mouse erythroid
precursors and molecular analysis of sorted erythroid
cells

Flow cytometric analysis of erythroid precursors from bone marrow

and spleen from WT and Fyn−/− was carried out as previously

described using the CD44-Ter119 or CD71-Ter119 strategies.18,26,27

Analysis of apoptotic basophilic, polychromatic and orthochromatic

erythroblasts was carried out on the CD44-Ter119 gated cells using

the Annexin-V PE Apoptosis detection kit (eBioscience, San Diego,

CA) following the manufacturer's instructions. Erythroblasts ROS

levels were measured as previously reported by Matte et al.18 Sorted

cells were used for (i) morphological analysis of erythroid precursors

on cytospin preparations stained with May Grunwald-Giemsa;

(ii) immuno-blot analysis with specific antibodies against anti-P-

Ser473-Akt, anti-Akt, anti-P-Ser2448-mTOR, anti-mTOR, anti-Jak2

(Cell Signaling, Massachusetts); anti-P-Ser40-Nrf2, anti-Nrf2, anti-

p62, anti-Rab5 (Abcam, Cambridge, UK); anti-Keap1 (Proteintech,

Manchester, UK); anti-EPO-R (Sigma-Aldrich, Missouri); anti-STAT5,

anti-Lyn (Santa Cruz Biotechnology, Texas); anti-GAPDH (Santa Cruz

Biotechnology, Texas) and anti-catalase (Abcam, Cambridge, UK) were

used as loading control; (iii) immunoprecipitation assay; and (iv) RT-

PCR analysis. Details of immunoprecipitation, RT-PCR and immuno-

blot protocols used for the analysis of sorted erythroblasts are

described in Supplementary materials and methods.

2.3 | CFU-E, BFU-E assay

CFU-E and BFU-E assay was carried out using MethoCult as previ-

ously reported.28 Details are present in Supplementary Methods.

2.4 | Immunofluorescence assay for p62 and FOXO3
in sorted erythroblasts

Immunofluorescence assay for p62 and FOXO3 in sorted erythro-

blasts was carried out as previously described.20,25,29 Details are

reported in Supplementary materials and methods.

2.5 | LysoTracker and MitoTracker analysis in
maturating reticulocytes

To obtain reticulocyte enriched RBC fraction, WT and Fyn−/− mice

were intraperitoneally injected with PHZ (40 mg/kg) at day 0, 1, 3 to

induce reticulocytosis, and blood was collected in heparinized tubes at

day 7, as previously described.30 RBCs were washed three times with

the maturation medium (60% IMDM, 2 mM L-glutamine, 100 U

Penicillin-Streptomicin, 30% FBS, 1% BSA and 0.5 μg/mL Amphoteri-

cin), diluted 1/500 in maturation medium and cultured in a cell culture

incubator at 37�C, 5% of CO2 for 3 days. Clearance of Lysosome and

Mitochondria, on the CD71/Ter119 gated RBC populations, were

analyzed at day 0 and 3 of culture using the Lysotracker Green DND-

26 (ThermoFisher Scientific) and the MitoTracker Deep Red

(ThermoFisher Scientific) probes, respectively, following the manufac-

turer's instructions. Samples were acquired using the FACSCantoII

flow cytometer (Becton Dickinson, San Jose, CA) and data were
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processed with the FlowJo software (Tree Star, Ashland, OR) as previ-

ously described.18,25

2.6 | Pearl's analysis of liver and spleen

Immediately following dissection, spleen and liver were formalin-fixed

and paraffin-embedded for Pearl's staining and blinded analyzed.

2.7 | Molecular analysis of liver

Protocols used for RNA isolation, cDNA preparation and quantitative

qRT-PCR have been previously described.31 Detailed primer

sequences are available on request and shown in Supporting Informa-

tion Table 1S. Liver immuno-blot analysis was performed as previously

described.18,32

2.8 | Measurement of heme and heme-oxygenase-1
activity

Liver heme content was measured using a fluorescence assay, as pre-

viously reported.33 Details are reported in Supporting Information.

HO-1 activity was evaluated in tissue microsomal fractions by spec-

trophotometric determination of bilirubin produced from hemin added

as the substrate, as previously reported.34

2.9 | Statistical analysis

Data were analyzed using either t-test or the 2-way analysis of vari-

ance (ANOVA) for repeated measures between the mice of various

genotypes. A difference with a P < .05 was considered significant.

3 | RESULTS

3.1 | The absence of Fyn results in decreased
efficiency of EPO-signaling pathway

Fyn−/− mice displayed a slight microcytic anemia characterized by a

small but significant reduction in hemoglobin, microcytosis and

increased reticulocyte counts compared to WT animals (Table 1). To

understand whether iron deficiency might account for the observed

microcytosis, we evaluated iron accumulation in the liver and spleen.

No differences in Pearl's staining for iron in either liver or spleen of

Fyn−/− compared to wild type mice was observed (Supporting Infor-

mation Figure 1Sa). In agreement, expression levels of H-Ferritin in

liver were similar in both mouse strains, whereas expression of L-

Ferritin was slightly, but significantly lower in Fyn−/− mice compared

to WT mice (Supporting Information Figure 1Sb). Haptoglobin levels

were measured to determine the possible contribution of hemolysis

to microcytic anemia in Fyn−/− mouse. Up-regulation of haptoglobin

mRNA levels was noted in liver from Fyn−/− mice, while plasma hapto-

globin levels were similar in both mouse strains (Supporting Informa-

tion Figure 1Sc, d). These findings suggest that in mice genetically

lacking Fyn, the noted mildly compensated anemia is not related to

either iron deficiency or chronic hemolysis.

To better define the Fyn−/− mouse hematologic phenotype, we

carried out the morphologic analysis of erythroblasts at distinct stages

of terminal erythroid differentiation. As shown in Figure 1A,

decreased chromatin condensation and larger cellular size was a char-

acteristic feature of different populations of sorted Fyn−/− mouse

erythroblasts (pop II: basophilic erythroblasts; pop III: polychromatic

erythroblasts and pop IV: orthochromatic erythroblasts; Figure 1A).

Furthermore, an increase in number of total erythroblasts in bone

marrow was noted (Figure 1B), without evidence of extramedullary

erythropoiesis (data not shown). The maturation profile of erythro-

blasts revealed an accumulation of orthochromatic erythroblasts

(Supporting Information Figure 2Sa). When CD44/Ter119 approach

was used to characterize erythropoiesis, no major differences in either

total erythroblasts or in erythroblasts subpopulations between WT

and Fyn−/− mice were observed (Supporting Information Figure 2Sb,

c). Up-regulation of EPO gene expression in kidney was found in

Fyn−/− mice compared to that of WT animals (Supporting Information

Figure 2Sd). In addition, we found increased ROS levels throughout

Fyn−/− erythroid maturation from basophilic erythroblasts (pop II) to

polychromatic (pop III) and orthochromatic erythroblasts (pop IV) com-

pared to WT cells (Figure 1C, upper panel). This was associated with

higher amounts of Annexin V+ cells in the different subpopulation of

erythroblasts compared to WT cells (Figure 1C, lower panel). Collec-

tively, these findings indicate a decreased efficiency of EPO signaling

pathway in the absence of Fyn. To understand the impact of Fyn on

EPO cascade, we evaluated the EPO-Jak2-STAT5 signaling pathway

in sorted Fyn−/− erythroblasts. As shown in Figure 1D, reduced activa-

tion of EPO-receptor (EPO-R) as reflected by decreased EPO-R Tyr-

phosphorylation, was noted in erythroblasts genetically lacking Fyn

(Figure 1D). This was associated with increased activation of Jak2

kinase without any change in Lyn activity compared to WT cells

(Figure 1D). Total expression of EPO-R was similar in sorted erythro-

blasts from both mouse strains; whereas Jak2 expression was higher

in Fyn−/− erythroblasts compared to healthy cells (Supporting Infor-

mation Figure 2Se). In agreement with the reduction in EPO-R activa-

tion, we observed a significant decrease in STAT5 activity with

concomitant down-regulation of Cish expression, a well-documented

gene target of STAT5 in sorted Fyn−/− erythroblasts (Figure 1D; Sup-

porting Information Figure 2Sf ). Following treatment with recombi-

nant EPO (10 U/day for 5 days), Fyn−/− mice showed blunted

increases in Hct and reticulocyte counts compared to WT animals

(Figure 1E).

TABLE 1 Hematological parameters and red cell indices in wild-type

and Fyn-/- mice

Wildtype mice Fyn-/- mice
(n = 15) (n = 15)

Hct (%) 48.2 � 1.3 46.1 � 0.8*

Hb (g/dL) 15.9 � 0.6 14.3 � 0.5*

MCV (fL) 50.3 � 0.4 46.5 � 1.3*

MCH (g/dL) 15.3 � 0.3 14.8 � 1.1

RDW (%) 11.6 � 0.3 13.2 � 0.4*

Retics (103 cells/μL) 451� 40.7 559 � 45*

Abbreviations: Hb, hemoglobin; Hct, hematocrit; MCH, mean corpuscular
hemoglobin; MCV, mean corpuscular volume; RDW, red cell distribution
width; Retics, reticulocytes.
*p< 0.05 compared to wild-type mice.
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To explore whether the reduced efficiency of EPO cascade might

also involve erythroid progenitors, we carried out the in vitro ery-

throid cell colony forming assay. A lower number of CFU-E and BFU-

E colony forming cells were found in Fyn−/− bone marrow (Figure 1F).

This was associated again with lower activation of EPO-R mediated

signaling cascade with a reduced activation of STAT5 but hyper-

activation of Jak2 in Fyn−/− CFU-E (Supporting Information

Figure 2Sg).

Our data indicate that Fyn is involved in EPO signaling cas-

cade and that absence of Fyn lead to increased ROS generation,

which may contribute to the hyper-activation of Jak2 in presence

of reduced efficiency of EPO signaling pathway.35 Thus, the very

mild microcytic anemia phenotype of Fyn−/− mice is likely to be

related more to reduced STAT5 activation, as observed in mice

genetically lacking STAT5 than to perturbation of iron

metabolism.36

FIGURE 1 The absence of Fyn results in perturbation of EPO signaling cascade. A, Left panel. Morphology of sorted erythroid precursors:

population II (pop II), corresponding to basophilic erythroblasts; population III (pop III), corresponding to polychromatic erythroblasts and
population IV (pop IV), corresponding to orthochromatic erythroblasts, from bone marrow of wild-type (WT) and Fyn−/− mice. Cytospins were
stained with may-Grunwald-Giemsa. One representative image from a total of 10 for each mouse strains. Right panel. Abnormal nuclear shaped
erythroblasts and binuclear erythroblasts from WT and Fyn −/− mice evaluated on cytospin stained with may-Grunwald-Giemsa. Data are

presented as means �SD (n = 8 from each strain); *P < .05 compared to WT; ^P < .05 compared to pop II−. B, Cyto-fluorimetric analysis of total
erythroid precursors from the bone marrow of WT and Fyn−/− mice using the following surface markers: CD71 and Ter119 (see also the
Supporting Information Materials and Methods and Figure 2Sa for maturation profile). Data are presented as means �SD (n = 8); * P < .05
compared to WT. C, Upper panel: ROS levels in erythroid precursors from bone marrow of wild-type (WT) and Fyn−/− mice. Data are presented
as means �SD (n = 10 from each strain); * P < .05 compared to WT. Lower panel: Amount of Annexin V+ cells in pop II, III, and IV from bone
marrow of WT and Fyn−/− mice. Data are presented as means �SD (n = 8 from each strain); * P < .05 compared to WT. D, Total Tyrosin-(Tyr)
phosphorylated proteins were immunoprecipitated from 2.5 1̂06 bone marrow sorted erythroblasts of WT and Fyn−/− mice and detected with
antibody to EPO- receptor (EPO-R), Janus kinase-2 (Jak-2), Lyn kinase (Lyn), signal transducer and activator of transcription 5 (STAT5). The
experiment shown is representative of six such experiments. IgG was used as loading control. Right panel: Densitometric analyses of the
immunoblot bands similar to those shown are presented at right (DU: Densitometric unit). Data are shown as means �SD (n = 6; *P < .01
compared to WT). E, Hematocrit (%) and reticulocyte count in (n = 6) and Fyn−/− (n = 6) mice exposed to recombinant erythropoietin injection
(EPO 50 U/kg/die, red arrows). Data are presented as means �SD; *P < .05 compared to WT mice; �P < .05 compared to baseline values. F, The
CFU-E and BFU-E from WT and Fyn−/− mice were quantified (#CFU-E or BFU-E/dish; lower panel); data are shown as means �SD (n = 6; P < .05
compared to WT) [Color figure can be viewed at wileyonlinelibrary.com]
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3.2 | Fyn−/− mice display increased sensitivity to
PHZ or doxorubicin induced stress erythropoiesis

Since EPO is the primary signal in stress erythropoiesis, we treated

Fyn−/− mice with either PHZ to induce acute hemolytic anemia due to

severe oxidative stress or Doxorubicin that temporary represses

erythropoiesis with generation of ROS.19,21 PHZ treatment induced a

similar drop in Hct levels in both mouse strains at day 2 following

PHZ administration (Figure 2A, upper panel). However, the Hct and

reticulocyte recovery were blunted in Fyn−/− mice compared to con-

trol animals (Figure 2A, upper and lower panel). Extramedullary eryth-

ropoiesis as assessed by increased splenic erythropoiesis showed a

blunted response in Fyn−/− mice at day 4 following PHZ treatment

with a compensatory increase by day 14 (Figure 2B, upper panel, see

also Supporting Information Figure 3Sa for absolute values of number

of erythroblasts at day 4 after PHZ). In bone marrow, we observed a

mild increase in total erythroblasts in both mouse strains at day 2 and

4 after PHZ injection (Figure 2B, lower panel). It is of interest to note

that in Fyn−/− mice at day 8 following PHZ treatment, we observed a

significant increase in the total number of bone marrow erythroblasts

as possible compensatory mechanism due to the failure in efficient

activation of splenic extramedullary erythropoiesis (Figure 2B, lower

panel). The amount of Annexin V+ cells following PHZ treatment was

FIGURE 2 A blunted response to stress erythropoiesis characterizes Fyn−/− mice. A, Hematocrit (%) and reticulocyte count in WT (n = 6) and

Fyn−/− (n = 6) mice exposed to phenylhydrazine injection (PHZ/kg/die, red arrows). Data are presented as means �SD; *P < .05 compared to WT
mice; �P < .05 compared to baseline values. B, Cyto-fluorimetric analysis of total erythroid precursors from the bone marrow and the spleen of
WT and Fyn−/− mice using the following surface markers: CD44 and Ter119 (see also the Supporting Information and Methods and Figure 3Sa
for absolute values). Data are presented as means �SD (n = 6); * P < .05 compared to WT. since we focus on day 4 and day 8 after PHZ
administration, we highlighted them respectively in green and red. This color code is used also in C. C, Amount of Annexin-V+ cells in population
III (pop III), corresponding to polychromatic erythroblasts and population IV (pop IV), corresponding to orthochromatic erythroblasts from either
spleen or bone marrow of WT and Fyn−/− mice respectively at 4 (green) and 8 (red) days after PHZ administration. Data are presented as means
�SD (n = 6 from each strain); *P < .05 compared to WT. D, Hematocrit (%) and reticulocyte count in WT (n = 6) and Fyn−/− (n = 6) mice exposed
to doxorubicin injection (DOXO 0,25 mg/kg/die, red arrows). Data are presented as means �SD; *P < .05 compared to WT mice; �P < .05
compared to baseline values. E, Cyto-fluorimetric analysis of total erythroid precursors from the bone marrow and the spleen of WT and Fyn−/−

mice using the following surface markers: CD44 and Ter119 (see also the Supporting Information and Methods and Figure 3Sb for absolute
values) 9 days after doxorubicin injection. Data are presented as means � SD (n = 6); * P < .05 compared to WT; �P < .05 compared to baseline
values [Color figure can be viewed at wileyonlinelibrary.com]
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higher in Fyn−/− polychromatic and orthochromatic erythroblasts

compared to WT cells (Figure 2C).

Doxorubicin induced a more severe and prolonged anemia in Fyn−/−

mice than in WT animals (Figure 2D, left panel). At day 3 and 6 following

Doxorubicin treatment, we noted a plateau in reticulocyte count in

Fyn−/− mice (Figure 2D), suggesting a substantial impairment in the retic-

ulocyte response compared to Doxorubicin treated WT animals. Enumer-

ation of total number of erythroblasts in spleen and bone marrow at day

9 after Doxorubicin administration, showed a substantial reduction in

both bone marrow and splenic erythropoiesis in Fyn−/− mice compared

to WT animals (Figure 2E; see also Supporting Information Figure 3Sb for

absolute values). Increases in the numbers of Annexin V+ polychromatic

and orthochromatic erythroblasts were noted in Fyn−/− mice compared

to WT animals at 9 days after Doxorubicin administration (Supporting

Information Figure 3Sc). The findings of diminished responsiveness of

Fyn−/− mice to stress erythropoiesis induced by PHZ or Doxorubicin, fur-

ther validate the importance of Fyn in EPO signaling cascade.

3.3 | Increased activation of Akt in Fyn−/− mice
contributes to the modulation of redox cellular
response during erythropoiesis

In normal and disordered erythropoiesis, previous studies have shown

that Jak2 and oxidation can activate Akt, which affects multiple targets

during erythropoiesis (Supporting Information Figure 4Sa).4 Notably, Akt

is also important in mediating cellular response to oxidation by the acti-

vation of two redox sensitive transcriptional factors, Forkhead box-O3

(FOXO3) and Nrf2, as well as of mTOR, the gatekeeper of autophagy

activation.37–39 Fyn−/− mouse erythroblasts displayed higher levels of

active Akt (Ser 473) compared to WT cells (Supporting Information

Figure 4Sb). The activation of FOXO3 was evaluated by both immuno-

microscopy and immunoblot analysis, this latter using a specific antibody

against inactive phospho-FOXO3. In Fyn−/− mouse erythroblasts, we

found a slight but not significant increase in activation of FOXO3 com-

pared to WT erythroblasts (Supporting Information Figure 4Sc).

We then focused on Nrf2 since Fyn is important in post-induction

regulation of Nrf2.16 We found increased activation of Nrf2, as indicated

by higher phospho-Nrf2 form in Fyn−/− mouse erythroblasts compared

to WT cells (Supporting Information Figure 5Sa). The up-regulation of

ARE-genes for anti-oxidant systems such as catalase, Gpx1, HO1, and

Prx2 confirmed the increased Nrf2 function in Fyn−/− mouse erythro-

blasts (Supporting Information Figure 5Sb). Immunoblot analysis with

specific antibodies for the corresponding proteins further validated the

activation of Nrf2 pathway (Supporting Information Figure 5Sc).

However, the increased expression of anti-oxidant and cyto-

protective system related to Nrf2 function does not completely coun-

teract the induced oxidative damage of Fyn−/− mouse erythroblasts.

Overall these effects are similar to those observed in both cell and ani-

mal models characterized by prolonged Nrf2 activation, which is associ-

ated with severe and even lethal phenotype,15,40 mainly related to the

accumulation of damaged proteins and the perturbation of autophagy.

Among the many Nrf2 related genes up-regulated in Fyn−/−

mouse erythroblasts, we focused on HO-1, the main heme-

catabolizing enzyme under stress conditions and a major player in the

maintenance of cell homeostasis.41

3.4 | Heme-oxygenase activity and heme levels are
similar in Fyn−/− and WT mice

Since systemic heme homeostasis is orchestrated by the liver, we evalu-

ated the impact of Fyn deficiency on hepatic heme catabolism. First, we

confirmed the increased activation of Nrf2 in Fyn−/− liver compared to

WT counterpart (Supporting Information Figure 6Sa). When we ana-

lyzed HO-1 expression and HO-1 activity in this organ, despite similar

levels of HO-1 mRNA in the livers of WT and Fyn−/− mice, HO-1 pro-

tein level was higher in the Fyn−/− mice. Similar findings were also noted

in erythroid cells (Supporting Information Figure 6Sb). Interestingly, in

spite of increased protein levels, hepatic HO activity was unchanged in

Fyn−/− animals (Supporting Information Figure 6Sc) suggesting no alter-

ation in heme catabolism. This conclusion was supported by the finding

that the heme content in the liver twas similar in WT and Fyn−/− mice

(Supporting Information Figure 6Sd). Thus, in the absence of Fyn, HO-1

protein is increased but its activity is unchanged in Fyn−/− mice, sug-

gesting the accumulation of functionally inactive HO-1.16 Autophagy is

the master control system regulating protein quality and clearance of

damaged proteins.37,39,42 The lysosomal related cargo p62 protein can

be used as indirect marker of autophagy and its accumulation correlates

with impairment of autophagy.43 In liver from Fyn−/− mice, we found an

accumulation of p62, suggesting a blockage of autophagy in the absence

of Fyn (Supporting Information Figure 6Se, f ). In agreement, mTOR was

more active in liver from Fyn−/− mice compared to WT animals

(Supporting Information Figure 6Sg).37,44,45 These data imply impaired

autophagy in liver from mice genetically lacking Fyn.

3.5 | Impaired autophagy related to mTOR
activation characterizes Fyn−/− mouse erythropoiesis

Since autophagy is also important during erythropoiesis,42 we explored

mTOR signaling during erythroid maturation in Fyn−/− mouse. As

shown in Figure 4A, Fyn−/− mouse erythroblasts displayed increased

activation of phosho-mTOR compared to WT cells in association with

accumulation of p62, similarly to that noted in Fyn−/− mouse liver

(Figure 3A) as well as of Rab5, a small GTP protein involved in the late

phases of autophagy (Figure 3A).39 Consistent with impaired autophagy

during erythropoiesis in Fyn−/− mouse, we noted accumulation of p62

in large clusters in Fyn−/− erythroblasts compared to WT cells

(Figure 3B, Supporting Information Figure 7Sa). Since p62 acts as

autophagy adaptor, controlling proteins turnover,15,16 we evaluated

Keap1, a known substrate of p62.16,43 In Fyn−/− erythroblasts, we

found increased accumulation of Keap1 compared to WT cells

(Supporting Information Figure 7Sb). Co-immunoprecipitation with

either antibodies to p62 (Figure 3C) or Keap1 (Figure 3D) showed accu-

mulation of p62-Keap1 complex in Fyn−/− mouse erythroblasts. If the

perturbation of autophagy in Fyn−/− mice is physiologically relevant to

erythroid maturation, it is also likely to affect reticulocyte matura-

tion.30,42,46 To test this possibility, we evaluated the in vitro maturation

of reticulocytes from PHZ treated mice.30 Decreased maturation of

Fyn−/− mouse reticulocyte was detected by decreased lysosomal clear-

ance with LysoTracker analysis (Supporting Information Figure 7Sc, d).

Interesting, no difference in mitochondrial clearance using MitoTracker

analysis was noted (Supporting Information Figure 7Sd, lower panel).
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Documentation of increased accumulation of p62 in Fyn−/− reticulo-

cyte further supports the impairment of autophagy during erythroid

maturation in Fyn−/− mice (Supporting Information Figure 7Se).

3.6 | The mTOR inhibitor Rapamycin unblocks
autophagy defect and ameliorates erythropoiesis in
Fyn−/− mice

We next tested whether Rapamycin, a known mTOR inhibitor, may

modulate Fyn−/− mouse erythropoiesis as reported for other models of

pathologic erythropoiesis.37,38,42,47 In Fyn−/− mice, Rapamycin adminis-

tration reduced total erythroblasts, while no significant effects were

observed in control animals as previously reported37,38,42,47 (Figure 4A).

In Fyn−/− mice treated with Rapamycin, this was associated with ame-

lioration of the terminal phase of erythropoiesis (Supporting Informa-

tion Figure 8Sa). Rapamycin significantly reduced the generation of

ROS and the amount of Annexin- V+ positive cells only in erythroid

precursors from Fyn−/− mice (Figure 4B, C). In agreement with

Rapamycin induced activation of autophagy, we found a significant

reduction in levels of p62 in erythroblasts from Rapamycin treated

Fyn−/− mice compared to vehicle treated animals (Figure 4D).

We also evaluated the impact of anti-oxidant treatment with N-

acetylcysteine (NAC), which has been shown to indirectly modulate

autophagy by reducing intracellular oxidation.48,49 In Fyn−/− mice,

NAC reduced total number of erythroblasts, increased orthochromatic

erythroblasts and reduced the amount of Annexin V+ cells, indicating

an amelioration of erythropoiesis in Fyn−/− mice (Supporting Informa-

tion Figure 8Sb, c, d). The findings indicate that Rapamycin unblocks

autophagy, allowing the degradation of accumulated proteins and

ameliorating erythropoiesis in Fyn−/− mice.

3.7 | Rapamycin rescues the abnormal response of
Fyn−/− erythroblasts to stress erythropoiesis

Next, we investigated whether Rapamycin may alleviate the PHZ-

induced stress erythropoiesis in Fyn−/− mice. As shown in Figure 4F,

FIGURE 3 Activation of mTOR and impaired autophagy characterize Fyn−/− mouse erythroblasts. A, Western-blot (Wb) analysis of phospho-mTOR

(p-mTOR), m-TOR, p62 and Rab 5 in sorted 1.5 1̂06 CD44+Ter119+FSCHigh bone marrow cells fromWT (n = 4) and Fyn−/− mice. GAPDHwas used as
protein loading control. Densitometric analyses of the immunoblot bands similar to those shown are presented at right (DU: Densitometric unit). Data
are shown as means �SD (n = 4; *P < .01 compared to WT). B, p62 immunostained cytospin preparations of sorted CD44+Ter119+FSCHigh bone
marrow cells fromWT and Fyn−/− mice counterstained with DAPI. Lower panel: The puncta mean fluorescence was measured using image J software.
Data are presented as means �SD (n = 3); *P < .05 compared toWT. C, Immunoprecipitates (IP) containing equal amounts of p62 were obtained from
2.5 1̂06 sorted CD44+Ter119+FSCHigh bone marrow cells fromWT and Fyn−/− mice, then subjected to immunoblot with anti-Keap1 or p62 antibody
(Wb: Western-blot). The experimental results shown are representative of four similar separate experiments. IgG was used as loading control.
Densitometric analyses of the immunoblot bands similar to those shown are presented at lower panel (DU). Data are shown as means �SD (n = 4;
*P < .01 compared toWT). D, IP of Keap 1 were obtained from sorted 2.5 1̂06 CD44+Ter119+FSChigh bone marrow cells fromWT and Fyn−/− mice,
then subjected to immunoblot with anti- p62 antibody (Wb: Western-blot). The experimental results shown are representative of 4 similar separate
experiments. IgG was used as loading control. Densitometric analyses of the immunoblot bands similar to those shown are presented at lower panel
(DU). Data are shown as means �SD (n = 4; *P < .01 compared to WT) [Color figure can be viewed at wileyonlinelibrary.com]
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the administration of Rapamycin in PHZ treated Fyn−/− mice resulted

in milder anemia and faster recovery compared to PHZ treated Fyn−/−

mice. At day 4 following PHZ administration, a plateau in Hct value is

evident in both Fyn−/− mouse groups; we focused therefore on this

time point to carry out a detailed analysis of. As shown in Figure 4G,

we found decreased extramedullary splenic erythropoiesis and

increased bone marrow erythropoiesis in PHZ-Rapamycin treated

Fyn−/− mice compared to PHZ treated animals.

Annexin-V+ cells were also markedly reduced by the co-

administration of Rapamycin and PHZ in Fyn−/− mouse erythroblasts

from both bone marrow and spleen compared to PHZ alone

(Figure 4H). It is interesting to note that, in WT animals the co-

administration of Rapamycin worsened the PHZ induced stress

erythropoiesis as previously reported38 (Supporting Information

Figure 9Sa-c). Collectively, these data support the idea that by activat-

ing autophagy it is possible to rescue the altered response of Fyn−/−

mice to stress erythropoiesis.

4 | DISCUSSION

We have identified Fyn as a new kinase involved in EPO signaling cas-

cade during normal and stress erythropoiesis. Previous studies have

documented a similar role for Jak2 and Lyn kinases in

erythropoiesis.2–4,50,51 The reduction in EPO induced phosphorylation

of STAT5 noted in Fyn−/− mouse erythroid cells implies a role for Fyn

FIGURE 4 The mTOR inhibitor, Rapamycin rescues the abnormal response of Fyn−/− erythroblasts to stress erythropoiesis. A, Effect of treatment

with Rapamycin (Rapa) on total erythroid precursors (CD71-Ter119) from the bone marrow of WT and Fyn−/− mice. Data are presented as means
�SD (n = 6); *P < .05 compared to WT; �P < .05 compared to vehicle treated animals. B and C, Effect of Rapamycin treatment (Rapa) on ROS levels
and Annexin V+ cells in erythroid precursors: Population II (pop II), corresponding to basophilic erythroblasts; population III (pop III), corresponding to
polychromatic erythroblasts and population IV (pop IV), corresponding to orthochromatic erythroblasts from bone marrow of WT and Fyn−/− mice.
Data are presented as means �SD (n = 6 from each strain); * P < .05 compared to WT; �P < .05 compared to vehicle treated animals. D, Western-
blot (Wb) analysis of p62 in 1.5 1̂06 sorted CD44+Ter119+FSChigh bone marrow cells with and without Rapamycin from Fyn−/− mice. Catalase was
used as protein loading control. Densitometric analyses of the immunoblot bands similar to those shown are presented at right (DU: Densitometric
unit). Data are shown as means �SD (n = 4; *P < .01 compared to WT). E, Hematocrit (%) in Fyn−/− (n = 6) mice treated with either phenylhydrazine
alone (PHZ) or combined with Rapamycin (Rapa- red bar is the time of treatment with it). The red arrow indicates the injection of PHZ. Data are
presented as means �SD; *P < .05 compared to PHZ treated animals; �P < .05 compared to baseline values. The gray area identifies the window
time for characterization of the stress erythropoiesis in Fyn−/− mice. F, Cyto-fluorimetric analysis of total erythroid precursors from either bone

marrow or spleen of Fyn−/− mice treated with either PHZ alone or Rapamycin (Rapa) plus PHZ (4 days after injection). Results from CD44-Ter119
(lower panel) or CD71Ter119 (upper panel) strategies are shown. Data are presented as means �SD (n = 4); *P < .05 compared to PHZ treated
animals; �P < .05 compared to baseline values. (G) Amount of Annexin V+ cells in population III (pop III), corresponding to polychromatic
erythroblasts and population IV (pop IV), corresponding to orthochromatic erythroblasts from either spleen or bone marrow of Fyn−/− mice. Data are
presented as means �SD (n = 4 from each strain); *P < .05 compared to WT [Color figure can be viewed at wileyonlinelibrary.com]
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downstream of STAT5 and suggests that Fyn is implicated in EPO sig-

naling pathway by modulating the activation of EPO-R through

STAT5. Similar findings have been reported for mice genetically lack-

ing Lyn,50 supporting the important and nonredundant role of Fyn in

the EPO-mediated signaling cascade. Our findings also suggest that

multiple kinases may be important in coordinating stress erythropoie-

sis in health and disease.

In Fyn−/− mice, the reduced effectiveness of EPO signaling is

associated with increase ROS generation and cell apoptosis. The

attempt of Fyn−/− mouse erythroblasts to adapt to oxidative stress is

indicated by the activation of the redox related transcription factor

Nrf2.35,37 However, the persistent activation of Nrf2 due to the

absence of its physiologic repressor Fyn, resulted in accumulation of

damaged/nonfunctional proteins that further amplified the intracellu-

lar oxidative stress.15,16 Indeed, Fyn−/− mice display impaired func-

tioning of several cytoprotective systems, such as HO-1 indicating an

impairment of the protein quality control process mediated by

autophagy.

Previous studies have shown that perturbation of autophagy is

detrimental for erythroid maturation and has been documented in

condition with disordered erythropoiesis such as β-thalassemic syn-

dromes or chorea-acanthocytosis or during iron deficiency.20,37,46,52,53

In Fyn −/− mice, the ROS mediated activation of Jak2-Akt–mTOR

pathway represses autophagy and thereby contributes to the ineffec-

tive erythropoiesis of Fyn−/− mice.4,39 Consistent with this hypothe-

sis, in Fyn−/− mouse erythroblasts we found accumulation of the

autophagy cargo protein p62, a marker of autophagy inhibition. In

addition, p62 was also complexed with Keap1, the Nrf2 shuttle

protein,16 further supporting the dysregulation of Nrf2 and the block-

age of autophagy during Fyn−/− erythropoiesis. The accumulation of

Rab5, a small GTPase involved in endocytic vesicular transport,54 sug-

gested a possible perturbation of the autophagy lysosomal system in

Fyn−/− mice. Indeed, we found a reduction in lysosome clearance dur-

ing Fyn−/− mouse reticulocyte maturation in presence of preserved

clearance of mitochondria compartment.

The ability of Rapamycin, a known mTOR inhibitor and autophagy

activator, to ameliorate Fyn−/− mouse baseline erythropoiesis and to

prevent accumulation of p62 support the notion of impaired autop-

hagy in Fyn−/− mice. This is further corroborated by the observation

that Rapamycin co-administrated with PHZ restored the erythropoi-

etic response in Fyn−/− mice. These finding shed a new light on the

link between dysregulation of Nrf2 and impairment of autophagy in

stress erythropoiesis, demonstrating the multimodal action of Fyn in

establishing the developmental program of erythropoiesis.

In conclusion, our data indicate that Fyn kinase is a novel and rele-

vant regulator of erythropoiesis, contributing to activation of the EPO

signaling cascade, and further increasing the complexity of this path-

way. The absence of Fyn and the reduced efficiency of EPO signal gen-

erate a “domino effect” affecting several mechanisms associated with

response to an increased oxidative stress (Supporting Information

Figure 9Sd). The dysregulation of post-induction regulation of Nrf2 due

to the absence of Fyn, results in accumulation of aggregated proteins,

which further increase cellular oxidative stress. A concomitant activa-

tion of Jak2-Akt-mTOR pathway results in repression of autophagy

(Supporting Information Figure 9Sd), which can by rescued with

Rapamycin, further reinforce the importance of autophagy as adaptive

mechanism to stressful conditions associated with perturbations of the

EPO signaling pathway. Future studies will be required to fully charac-

terize the role Fyn in cellular signaling in pathologic erythropoiesis.
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