Lighting design and modelling or industrial applications like luminaire planning and commissioning rely heavily on time-consuming manual measurements or on physically coherent computational simulations. Regarding the latter, standard approaches are based on CAD modeling simulations and offline rendering, with long processing times and therefore inflexible workflows. Thus, in this paper we propose a computer vision based system to measure lighting with just a single RGBD camera. The proposed method uses both depth data and images from the sensor to provide a dense measure of light intensity in the field of view of the camera. We evaluate our system on novel ground truth data and compare it to state-of-the-art commercial lightplanning software. Our system provides improved performance, while being completely automated, given that the CAD model is extracted from the depth and the albedo estimated with the support of RGB images. To the best of our knowledge, this is the first automatic framework for the estimation of lighting in general indoor scenarios from RGBD input.

RGBD2lux: Dense light intensity estimation with an RGBD sensor

HASAN, IRTIZA;Marco Cristani
;
Alessio Del Bue
In corso di stampa

Abstract

Lighting design and modelling or industrial applications like luminaire planning and commissioning rely heavily on time-consuming manual measurements or on physically coherent computational simulations. Regarding the latter, standard approaches are based on CAD modeling simulations and offline rendering, with long processing times and therefore inflexible workflows. Thus, in this paper we propose a computer vision based system to measure lighting with just a single RGBD camera. The proposed method uses both depth data and images from the sensor to provide a dense measure of light intensity in the field of view of the camera. We evaluate our system on novel ground truth data and compare it to state-of-the-art commercial lightplanning software. Our system provides improved performance, while being completely automated, given that the CAD model is extracted from the depth and the albedo estimated with the support of RGB images. To the best of our knowledge, this is the first automatic framework for the estimation of lighting in general indoor scenarios from RGBD input.
In corso di stampa
Geometry computation, illumination modeling
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11562/988637
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact