We study a multiscale approach for the control of agent-based, two-population models. The control variable acts over one population of leaders, which influence the population of followers via the coupling generated by their interaction. We cast a quadratic optimal control problem for the large-scale microscale model, which is approximated via a Boltzmann approach. By sampling solutions of the optimal control problem associated to binary two-population dynamics, we generate sub-optimal control laws for the kinetic limit of the multi-population model. We present numerical experiments related to opinion dynamics assessing the performance of the proposed control design.

(Sub)Optimal feedback control of mean field multi-population dynamics

Giacomo Albi;
2018-01-01

Abstract

We study a multiscale approach for the control of agent-based, two-population models. The control variable acts over one population of leaders, which influence the population of followers via the coupling generated by their interaction. We cast a quadratic optimal control problem for the large-scale microscale model, which is approximated via a Boltzmann approach. By sampling solutions of the optimal control problem associated to binary two-population dynamics, we generate sub-optimal control laws for the kinetic limit of the multi-population model. We present numerical experiments related to opinion dynamics assessing the performance of the proposed control design.
2018
Agent-based models, mean field models, multi-population dynamics, optimal feedback control
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11562/976981
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 5
social impact