Model checking is one of the most powerful and widespread tools for system verification with applications in many areas of computer science and artificial intelligence. The large majority of model checkers deal with properties expressed in point-based temporal logics, such as LTL and CTL. However, there exist relevant properties of systems which are inherently interval-based. Model checking algorithms for interval temporal logics (ITLs) have recently been proposed to check interval properties of computations. As the model checking problem for full Halpern and Shoham's ITL (HS for short) turns out to be decidable, but computationally heavy, research has focused on its well-behaved fragments. In this paper, we provide an almost final picture of the computational complexity of model checking for HS fragments with modalities for (a subset of) Allen's relations meets, met by, starts, and ends.
Model Checking Well-Behaved Fragments of {HS:} The (Almost) Final Picture
Angelo Montanari;Pietro Sala
2016-01-01
Abstract
Model checking is one of the most powerful and widespread tools for system verification with applications in many areas of computer science and artificial intelligence. The large majority of model checkers deal with properties expressed in point-based temporal logics, such as LTL and CTL. However, there exist relevant properties of systems which are inherently interval-based. Model checking algorithms for interval temporal logics (ITLs) have recently been proposed to check interval properties of computations. As the model checking problem for full Halpern and Shoham's ITL (HS for short) turns out to be decidable, but computationally heavy, research has focused on its well-behaved fragments. In this paper, we provide an almost final picture of the computational complexity of model checking for HS fragments with modalities for (a subset of) Allen's relations meets, met by, starts, and ends.File | Dimensione | Formato | |
---|---|---|---|
12792-57572-1-PB.pdf
non disponibili
Tipologia:
Versione dell'editore
Licenza:
Accesso ristretto
Dimensione
617 kB
Formato
Adobe PDF
|
617 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.