BACKGROUND: The gut microbiome is the full set of microbes living in the gastrointestinal tract and is emerging as an important dynamic/fluid system that, if altered by environmental, dietetic or pharmacological factors, could considerably influence drug response. However, the immunosuppressive drug-induced modifications of this system are still poorly defined. METHODS: We employed an innovative bioinformatics approach to assess differences in the whole-gut microbial metagenomic profile of 20 renal transplant recipients undergoing maintenance treatment with two different immunosuppressive protocols. Nine patients were treated with everolimus plus mycophenolate mofetil (EVE+MMF group), and 11 patients were treated with a standard therapy with tacrolimus plus mycophenolate mofetil (TAC+MMF group). RESULTS: A statistical analysis of comparative high-throughput data demonstrated that although similar according to the degree of Shannon diversity (alpha diversity) at the taxonomic level, three functional genes clearly discriminated EVE+MMF versus TAC+MMF (cutoff: log2 fold change≥1, FDR≤0.05). Flagellar motor switch protein (fliNY) and type IV pilus assembly protein pilM (pilM) were significantly enriched in TAC+MMF-treated patients, while macrolide transport system mrsA (msrA) was more abundant in patients treated with EVE+MMF. Finally, PERMANOVA revealed that among the variables analyzed and included in our model, only the consumption of sugar significantly influenced beta diversity. CONCLUSIONS: Our study, although performed on a relatively small number of patients, showed, for the first time, specific immunosuppressive-related effects on fecal microbiome of renal transplant recipients and it suggested that the analysis of the gut microbes community could represent a new tool to better understand the effects of drugs currently employed in organ transplantations. However, multicenter studies including healthy controls should be undertaken to better address this objective.

Impact of maintenance immunosuppressive therapy on the fecal microbiome of renal transplant recipients: Comparison between an everolimus- and a standard tacrolimus-based regimen.

Zaza, Gianluigi;DALLA GASSA, ALESSANDRA;FELIS, Giovanna;Granata, Simona;TORRIANI, Sandra;LUPO, Antonio
2017-01-01

Abstract

BACKGROUND: The gut microbiome is the full set of microbes living in the gastrointestinal tract and is emerging as an important dynamic/fluid system that, if altered by environmental, dietetic or pharmacological factors, could considerably influence drug response. However, the immunosuppressive drug-induced modifications of this system are still poorly defined. METHODS: We employed an innovative bioinformatics approach to assess differences in the whole-gut microbial metagenomic profile of 20 renal transplant recipients undergoing maintenance treatment with two different immunosuppressive protocols. Nine patients were treated with everolimus plus mycophenolate mofetil (EVE+MMF group), and 11 patients were treated with a standard therapy with tacrolimus plus mycophenolate mofetil (TAC+MMF group). RESULTS: A statistical analysis of comparative high-throughput data demonstrated that although similar according to the degree of Shannon diversity (alpha diversity) at the taxonomic level, three functional genes clearly discriminated EVE+MMF versus TAC+MMF (cutoff: log2 fold change≥1, FDR≤0.05). Flagellar motor switch protein (fliNY) and type IV pilus assembly protein pilM (pilM) were significantly enriched in TAC+MMF-treated patients, while macrolide transport system mrsA (msrA) was more abundant in patients treated with EVE+MMF. Finally, PERMANOVA revealed that among the variables analyzed and included in our model, only the consumption of sugar significantly influenced beta diversity. CONCLUSIONS: Our study, although performed on a relatively small number of patients, showed, for the first time, specific immunosuppressive-related effects on fecal microbiome of renal transplant recipients and it suggested that the analysis of the gut microbes community could represent a new tool to better understand the effects of drugs currently employed in organ transplantations. However, multicenter studies including healthy controls should be undertaken to better address this objective.
2017
gut microbiome, renal transplantation, everolimus, tacrolimus
File in questo prodotto:
File Dimensione Formato  
Plos One 2017.pdf

accesso aperto

Tipologia: Versione dell'editore
Licenza: Dominio pubblico
Dimensione 1.54 MB
Formato Adobe PDF
1.54 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11562/963888
Citazioni
  • ???jsp.display-item.citation.pmc??? 23
  • Scopus 50
  • ???jsp.display-item.citation.isi??? 43
social impact