In an era where accumulating data is easy and storing it inexpensive, feature selection plays a central role in helping to reduce the high-dimensionality of huge amounts of otherwise meaningless data. In this paper, we propose a graph-based method for feature selection that ranks features by identifying the most important ones into arbitrary set of cues. Mapping the problem on an affinity graph - where features are the nodes - the solution is given by assessing the importance of nodes through some indicators of centrality, in particular, the Eigenvector Centrality (EC). The gist of EC is to estimate the importance of a feature as a function of the importance of its neighbors. Ranking central nodes individuates candidate features, which turn out to be effective from a classification point of view, as proved by a thoroughly experimental section. Our approach has been tested on 7 diverse datasets from recent literature (e.g., biological data, object recognition, among others), and compared against filter, embedded, and wrappers methods. The results are remarkable in terms of accuracy, stability and low execution time.
Feature Selection via Eigenvector Centrality
ROFFO, GIORGIO;MELZI, SIMONE
2016-01-01
Abstract
In an era where accumulating data is easy and storing it inexpensive, feature selection plays a central role in helping to reduce the high-dimensionality of huge amounts of otherwise meaningless data. In this paper, we propose a graph-based method for feature selection that ranks features by identifying the most important ones into arbitrary set of cues. Mapping the problem on an affinity graph - where features are the nodes - the solution is given by assessing the importance of nodes through some indicators of centrality, in particular, the Eigenvector Centrality (EC). The gist of EC is to estimate the importance of a feature as a function of the importance of its neighbors. Ranking central nodes individuates candidate features, which turn out to be effective from a classification point of view, as proved by a thoroughly experimental section. Our approach has been tested on 7 diverse datasets from recent literature (e.g., biological data, object recognition, among others), and compared against filter, embedded, and wrappers methods. The results are remarkable in terms of accuracy, stability and low execution time.File | Dimensione | Formato | |
---|---|---|---|
NFmcp2016_paper_13.pdf
accesso aperto
Tipologia:
Versione dell'editore
Licenza:
Dominio pubblico
Dimensione
630.25 kB
Formato
Adobe PDF
|
630.25 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.