Multi-discipline components introduce problems when inserted within virtual platforms of Smart Systems for functional validation. This paper lists the most common emerging problems and it proposes a set of solutions to them. It presents a set of techniques, unified in an automatic abstraction methodology, useful to achieve fast analog mixed-signal simulation even when different physical disciplines and modeling styles are combined into a single analog model. The paper makes use of a complex case study. It deals with multiple-discipline descriptions, non-electrical conservative models, non-linear equation systems, and mixed time/frequency domain models. The original component behavior has been modeled in Verilog-AMS by using electrical, mechanical and kinematic equations. Then, it has been abstracted and integrated within a virtual platform of a mixed-signal smart system for efficient functional simulation.

Automatic abstraction of multi-discipline analog models for efficient functional simulation

FRACCAROLI, ENRICO;LORA, MICHELE;FUMMI, Franco
2017-01-01

Abstract

Multi-discipline components introduce problems when inserted within virtual platforms of Smart Systems for functional validation. This paper lists the most common emerging problems and it proposes a set of solutions to them. It presents a set of techniques, unified in an automatic abstraction methodology, useful to achieve fast analog mixed-signal simulation even when different physical disciplines and modeling styles are combined into a single analog model. The paper makes use of a complex case study. It deals with multiple-discipline descriptions, non-electrical conservative models, non-linear equation systems, and mixed time/frequency domain models. The original component behavior has been modeled in Verilog-AMS by using electrical, mechanical and kinematic equations. Then, it has been abstracted and integrated within a virtual platform of a mixed-signal smart system for efficient functional simulation.
2017
978-3-9815370-8-6
Mathematical model, Hardware design languages, Mirrors, Computational modeling, Standards, C++ languages, Kinematics
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11562/961689
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact