Bag of Visual words (BoV) is one of the most successful strategy for object recognition, used to represent an image as a vector of counts using a learned vocabulary. This strategy assumes that the representation is built using patches that are either densely extracted or sampled from the images using feature detectors. However, the dense strategy captures also the noisy background information, whereas the feature detection strategy can lose important parts of the objects. In this paper we propose a solution in-between these two strategies, by densely extracting patches from the image, and weighting them accordingly to their salience. Intuitively, highly salient patches have an important role in describing an object, while those with low saliency are still taken with low emphasis, instead of discarding them. We embed this idea in the word encoding mechanism adopted in the BoV approaches. The technique is successfully applied to vector quantization and Fisher vector, on Caltech-101 and Caltech-256.

Weighted bag of visual words for object recognition

BAZZANI, Loris;CRISTANI, Marco;MURINO, Vittorio
2014-01-01

Abstract

Bag of Visual words (BoV) is one of the most successful strategy for object recognition, used to represent an image as a vector of counts using a learned vocabulary. This strategy assumes that the representation is built using patches that are either densely extracted or sampled from the images using feature detectors. However, the dense strategy captures also the noisy background information, whereas the feature detection strategy can lose important parts of the objects. In this paper we propose a solution in-between these two strategies, by densely extracting patches from the image, and weighting them accordingly to their salience. Intuitively, highly salient patches have an important role in describing an object, while those with low saliency are still taken with low emphasis, instead of discarding them. We embed this idea in the word encoding mechanism adopted in the BoV approaches. The technique is successfully applied to vector quantization and Fisher vector, on Caltech-101 and Caltech-256.
2014
Visualization, Feature extraction, Object recognition, Vectors, Encoding, Pipelines, Training, feature weighting, object recognition, dictionary learning, visual saliency
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11562/961547
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact