Few information is available about the tyraminogenic potential of the species Enterococcus mundtii. In this study, two plant-derived strains of E. mundtii were selected and investigated to better understand the phenotypic behaviour and the genetic mechanisms involved in tyramine accumulation. Both the strains accumulated tyramine from the beginning of exponential phase of growth, independently on the addition of tyrosine to the medium. The strains accumulated also 2-phenylethylamine, although with lower efficiency and in greater extent when tyrosine was not added. Accordingly, the tyrosine decarboxylase (tyrDC) gene expression level increased during the exponential phase with tyrosine added, while it remained constant and high without precursor. The genetic organization as well as sequence identity levels of tyrDC and tyrosine permease (tyrP) genes indicated a correlation with those of phylogenetically closer enterococcal species, such as E. faecium, E. hirae and E. durans; however, the gene Na+/H+ antiporter (nhaC) that usually follow tyrP is missing. In addition, BLAST analysis revealed the presence of additional genes encoding for decarboxylase and permease in the genome of several E. mundtii strains. It is speculated the occurrence of a duplication event and the acquisition of different specificity for these enzymes that deserves further investigations.

Tyrosine decarboxylase activity of Enterococcus mundtii: new insights into phenotypic and genetic aspects

GATTO, Veronica;TORRIANI, Sandra;
2016-01-01

Abstract

Few information is available about the tyraminogenic potential of the species Enterococcus mundtii. In this study, two plant-derived strains of E. mundtii were selected and investigated to better understand the phenotypic behaviour and the genetic mechanisms involved in tyramine accumulation. Both the strains accumulated tyramine from the beginning of exponential phase of growth, independently on the addition of tyrosine to the medium. The strains accumulated also 2-phenylethylamine, although with lower efficiency and in greater extent when tyrosine was not added. Accordingly, the tyrosine decarboxylase (tyrDC) gene expression level increased during the exponential phase with tyrosine added, while it remained constant and high without precursor. The genetic organization as well as sequence identity levels of tyrDC and tyrosine permease (tyrP) genes indicated a correlation with those of phylogenetically closer enterococcal species, such as E. faecium, E. hirae and E. durans; however, the gene Na+/H+ antiporter (nhaC) that usually follow tyrP is missing. In addition, BLAST analysis revealed the presence of additional genes encoding for decarboxylase and permease in the genome of several E. mundtii strains. It is speculated the occurrence of a duplication event and the acquisition of different specificity for these enzymes that deserves further investigations.
2016
Enterococcus mundtii, biogenic amines, tyramine, 2-phenylethylamine, tyrDC gene expression
File in questo prodotto:
File Dimensione Formato  
Gatto_et_al-2016-Microbial_Biotechnology.pdf

accesso aperto

Descrizione: Articolo principale
Tipologia: Versione dell'editore
Licenza: Dominio pubblico
Dimensione 269.03 kB
Formato Adobe PDF
269.03 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11562/955412
Citazioni
  • ???jsp.display-item.citation.pmc??? 3
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 6
social impact