In this paper we report the results of the SHREC 2016 contest on "Retrieval of human subjects from depth sensor data". The proposed task was created in order to verify the possibility of retrieving models of query human subjects from single shots of depth sensors, using shape information only. Depth acquisition of different subjects were realized under different illumination conditions, using different clothes and in three different poses. The resulting point clouds of the partial body shape acquisitions were segmented and coupled with the skeleton provided by the OpenNI software and provided to the participants together with derived triangulated meshes. No color information was provided. Retrieval scores of the different methods proposed were estimated on the submitted dissimilarity matrices and the influence of the different acquisition conditions on the algorithms were also analyzed. Results obtained by the participants and by the baseline methods demonstrated that the proposed task is, as expected, quite difficult, especially due the partiality of the shape information and the poor accuracy of the estimated skeleton, but give useful insights on potential strategies that can be applied in similar retrieval procedures and derived practical applications.
Retrieval of Human Subjects from Depth Sensor Data
GIACHETTI, Andrea;FORNASA, FRANCESCO;PAREZZAN, FEDERICO;
2016-01-01
Abstract
In this paper we report the results of the SHREC 2016 contest on "Retrieval of human subjects from depth sensor data". The proposed task was created in order to verify the possibility of retrieving models of query human subjects from single shots of depth sensors, using shape information only. Depth acquisition of different subjects were realized under different illumination conditions, using different clothes and in three different poses. The resulting point clouds of the partial body shape acquisitions were segmented and coupled with the skeleton provided by the OpenNI software and provided to the participants together with derived triangulated meshes. No color information was provided. Retrieval scores of the different methods proposed were estimated on the submitted dissimilarity matrices and the influence of the different acquisition conditions on the algorithms were also analyzed. Results obtained by the participants and by the baseline methods demonstrated that the proposed task is, as expected, quite difficult, especially due the partiality of the shape information and the poor accuracy of the estimated skeleton, but give useful insights on potential strategies that can be applied in similar retrieval procedures and derived practical applications.File | Dimensione | Formato | |
---|---|---|---|
shrec16.pdf
solo utenti autorizzati
Tipologia:
Documento in Pre-print
Licenza:
Accesso ristretto
Dimensione
1.2 MB
Formato
Adobe PDF
|
1.2 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.