Detailed derivation of an information theoretic framework for real PTZ management.Introduction and implementation of a non-myopic strategy.Large experimental validation, with synthetic and realistic datasets.Working demonstration of myopic strategy on an off-the-shelf PTZ camera. Automatic multiple object tracking with a single pan-tilt-zoom (PTZ) cameras is a hard task, with few approaches in the literature, most of them proposing simplistic scenarios. In this paper, we present a novel PTZ camera management framework in which at each time step, the next camera pose (pan, tilt, focal length) is chosen to support multiple object tracking. The policy can be myopic or non-myopic, where the former analyzes exclusively the current frame for deciding the next camera pose, while the latter takes into account plausible future target displacements and camera poses, through a multiple look-ahead optimization. In both cases, occlusions, a variable number of subjects and genuine pedestrian detectors are taken into account, for the first time in the literature. Convincing comparative results on synthetic data, realistic simulations and real trials validate our proposal, showing that non-myopic strategies are particularly suited for a PTZ camera management.

Non-myopic information theoretic sensor management of a single pan–tilt–zoom camera for multiple object detection and tracking

CRISTANI, Marco;MURINO, Vittorio
2015-01-01

Abstract

Detailed derivation of an information theoretic framework for real PTZ management.Introduction and implementation of a non-myopic strategy.Large experimental validation, with synthetic and realistic datasets.Working demonstration of myopic strategy on an off-the-shelf PTZ camera. Automatic multiple object tracking with a single pan-tilt-zoom (PTZ) cameras is a hard task, with few approaches in the literature, most of them proposing simplistic scenarios. In this paper, we present a novel PTZ camera management framework in which at each time step, the next camera pose (pan, tilt, focal length) is chosen to support multiple object tracking. The policy can be myopic or non-myopic, where the former analyzes exclusively the current frame for deciding the next camera pose, while the latter takes into account plausible future target displacements and camera poses, through a multiple look-ahead optimization. In both cases, occlusions, a variable number of subjects and genuine pedestrian detectors are taken into account, for the first time in the literature. Convincing comparative results on synthetic data, realistic simulations and real trials validate our proposal, showing that non-myopic strategies are particularly suited for a PTZ camera management.
2015
PTZ tracking, multi target tracking, probabilistic tracking
File in questo prodotto:
File Dimensione Formato  
manuscriptAccepted.pdf

accesso aperto

Tipologia: Documento in Pre-print
Licenza: Dominio pubblico
Dimensione 1.95 MB
Formato Adobe PDF
1.95 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11562/932909
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 13
  • ???jsp.display-item.citation.isi??? 11
social impact