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Abstract

Automatic multiple object tracking with a single pan-tbom (PTZ) cameras is a hard task,
with few approaches in the literature, most of them progpsimplistic scenarios. In this paper,
we present a novel PTZ camera management framework in whiehch time step, the next
camera pose (pan, tilt, focal length) is chosen to suppoltipleiobject tracking. The policy can
be myopic or non-myopic, where the former analyzes exoligithe current frame for deciding
the next camera pose, while the latter takes into accouunsitlke future target displacements and
camera poses, through a multiple look-ahead optimizatioboth cases, occlusions, a variable
number of subjects and genuine pedestrian detectors ame a0 account, for the first time in
the literature. Convincing comparative results on symthedta, realistic simulations and real
trials validate our proposal, showing that non-myopictstyees are particularly suited for a PTZ
camera management.

Keywords: Pan-Tilt-Zoom Camera, Multiple Object Tracking, Sensomgigement, Markov
Decision Process

1. Introduction

Visual Tracking of multiple objects in realistic outdoores@rios is often performed in wide
areas. In these viewing conditions a stationary fixed faaagth camera has typically too limited
field of view and image resolution with respect to the scenergx Therefore, a network of cam-
eras is used to sufficiently cover the area at the requiredutesn [1,[2/3]4[5]. However, this
may be unfeasible for the cost associated to the setup amienaince of the camera network, as
well as for the practical impossibility to provide all theaessary resolutions for target biometric
recognition at a distance. Similarly, in the case of a vehiebunted camerdl [, |ﬂ|§ 9] it would
be difficult to cover a wide area at adequate resolution dukedimited acceleration at which
the camera may be moved. Active Visi@[lO] and specificaliyive Pan Tilt Zoom (PTZ) cam-
eras, have promised to solve these limitations, permitiirigast in principle the monitoring of
a large space at variable image resoluti@mll, 4]. Howéatting a large number of stationary
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or PTZ cameras operate in a cooperative way is still an expeaad complex squtiorE[_iZh3];
for this reason, exploiting a single zooming sensor could bere reasonable and worthy goal.
According to this, in this paper, we propose and show thefiisrtd an active sensing approach
to multiple object detection and tracking using a single flamoom camera.

Despite the high exploitable potential, when applied fer tdssk of multiple object tracking
in world coordinates, a single PTZ camera induces a numbesraplex problems that must be
solved to obtain effective resullbj]@ 15]. Specificallgmera calibration solutions adopting
natural landmarks [16, 17] should be preferred with respecthers adopting domain specific
scene landmark geometry asm[ﬂ, ﬁ 18]. Since the PTZ reamest also undergo rapid and
unpredictable motions to rapidly gaze at any part of the fiéldew, real time tracking of cam-
era motion should not be based on recursive filtering, buteyfrime based metho 16 19].
At the same time, the scene background appearance must tireucursly updated [16, 20, 21].
Moreover, due to the fact that monitoring is performed inrgdaarea, accurate objects localiza-
tion in a common 3D world reference frame is needed to tratjeta at a distance. This requires
some form of online camera calibration since the cameranpetexs change dynamically. The
framework we developed iﬂlZZ] is conceived to support akthrequirements and is therefore
suitable to be used in task-driven active surveillance efes with multiple moving objects.

Starting from this frameworlf[iZ], we propose a solution §ensor management (i.e. de-
termine the best way to control the visual sensor) in ordemteance multiple target detection
and tracking in a wide area. Here the focus is on non-myopis@emanagement where the
long-term ramifications of taking a particulsensing actiomre accounted for decision making.
A sensing action may consist of choosing a particular imagegssing modality (e.g. pedestrian
detection or motion detection), a particular camera poskfacal length, or a combination of
the two. Information gaiHEB] is chosen as performancedaitdir of decision making, since it
has the desirable property that different inhomogeneousiisg actions can be simultaneously
optimized in a single metric. This requires to maintain thabability density which capture un-
certainty in the current state estimate. In our settingetlage multiple actions that can be tasked
by evaluating a single global metric, some of which contebbetter than others to tracking.
The PTZ camera sensor is used to gain information about tiesriatic state (e.g. position and
velocity) and objects detectabiﬁyThere are many objectives that the sensor manager may be
tuned to meet, e.g. minimization of track loss, probabitifytarget detection, minimization of
track error/covariance, and identification accuracy. Edc¢hese different objectives taken alone
may lead to a different sensor allocation strategy. As betan Sec[#, we jointly optimize over
all these objectives by maximizing the expected amountfofimation extracted from the scene,
namely the expected information gain between the currejectthstate estimate and the state
estimate after a measurement has been made. Since the iEsgsaction must be selected
before actually executing it, what is practically maxinudze the expected reduction in entropy
(i.e. the expected information gain) that a sensing actidhprnoduce. Fig[l shows the three
main components of the complete multi target tracking sydta a single PTZ camera.

The sensor management problem can be approached in a theipy with the Marko-
vian Decision Process (MDP) formalism24]. However, thegderm (non-myopic) planning
solution suffers from combinatorial explosion and may bngel, as in our case, in a continu-
ous state space. Approximate solutions are thereforerastjand will be discussed in the next

2 Image object measurements are obtained according to a detieatdrave a time-varying object response char-
acteristics. For example in the case of pedestrian deteasqorocessing modality, the response characteristic varies
depending on the imaged size of the object and on how much teetabjoccluded.
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Figure 1: The three main components of the system.

section. This work extends the preliminary results we olgdiin @] where we have analyzed
the myopic (i.e. greedy) aspects of sensor management. ribgreal results show that the
non-myopic strategy provides a substantial performangedwement by better capturing the
complex space-time trade-off between objects and cametiamdwo motivating examples for

which the non-myopic will outperform the myopic strategg:at) the case in which an object is
repeatedly measured before it gets occluded so as to shigspercertainty when it reappears;
2) the case in which objects are measured exploiting thbreadid zoofd so as to sharpen their
uncertainties. The underlying assumption is that if theraipee scenario evolves with reason-
able temporal coherence, it is possible to predict thetghifi gathering information of a future

action.

Synthetic and real experiments are shown confirming thalsility of our approach for real-
istic scenarios. Fidll2 shows few frames from the three detgperiments.

The rest of the paper is organized as follows. We give andvawerof related work in
Sec[2 while we summarize our contributions in $éc. 3. Tharinétion theoretic formulation
based on MDP for the myopic version is presented in Bec. 4trenohodeling of the real world
challenges such as missed detections and occlusions snpedsin Sed.]5. The non-myopic
version is described in Sdd. 6. In SEE. 7 we give a detailemigiiion about how the proposed
solution can be extended to a network of multiple camerasieSmplementation and evaluation
details are given in Selc] 8. Experiments for the myopic fraatk are reported in Seg] 9 while
experiments for the non-myopic version are reported in E8c. Finally the conclusions are
drawn in Sed 1.

2. Related work

Automatic multiple object tracking with a single pan-tbom camera is a hard task with
few approaches present in the literature, most of which ggesimplified scenarios. One of

SCalibrated zoom allows increasing measurement accuracy itdvptane coordinate object localization. In the
Appendix a formal proof of this result is presented.
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Figure 2: (a) Synthetic scenario; (b) realistic simulatigf) real trial (best viewed in colors).

the most challenging part is that the evaluation with reg¢h daquire the development of a real
time system since it is not possible to work offline with pesmrdeﬂ videos. To deal with
this issue, in[[26] a completely simulated environment isated through computer graphics
and different strategies for camera to target assignmeatpraposed and compared. [27]
the authors propose a system for cooperative tracking leetwaultiple Active Vision Agents
(AVA). In this solution each AVA agent manages visual petwap camera action and network
communication to perform cooperative tracking. Differsoheduling policies for a network of
PTZ cameras in a master-slave configuration were testédgin2®. However, the strategies
described aboveé [25, 2(7./48] 29] are mainly hand-craftediyequire precise information on the
targets’ position from other sensors. An overview of reaaathods for managing PTZ camera
networks can be found in [30,131].

Principled information theoretic frameworks exploitirfgetconcept of information gain for
single object tracking are introduced IE][@ B3, 34].LIn][8@timal selection of the focal lengths
of two cameras during active 3D object tracking is propoddus is the first work on active focal
length selection for improving accuracy in 3D object tragki Despite the promising results
observed in a controlled laboratory test, the system is abtmature to work in unconstrained
video sequences. IHSS], the authors propose a non-myopitien for optimal focal length
selection based on the minimization of the expected entofy tracked object. Tracking is
performed in 2D, only on simulated data, using an extenddch&a filter. In [34] the authors
suggests a method to control the zoom in order to obtain maximesolution by placing a limit
in the innovation of a constant velocity Kalman filter. In fieular, the zoom is used to modify

4If the video is recorded at high resolution it is possibleropcand downsample the image to get the desired field of
view. However the level of detail and the quality of the imalgattcan be captured with optical zoom is still orders of
magnitude larger than the one achievable with the digitafrzoo
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Table 1: Overview of the main characteristics for state ofatienethods and our solution.

Method Sync. | Calibration # Tested Cameras Multi target Occlusions Optimized cost
[12] Yes Yes (offline) 4 fixed and 4 PTZ Yes, in the fixed| Yes, in the fixed| Highest target resolution
cameras cameras
[13] Yes Yes (offline) 9PTZ Yes No Tracking accuracy and high-
est target resolution
36371 | No Yes (online) 1PTZ No No Costant object imaged size
] No No 1PTZ Yes No Tracking accuracy
] Yes Yes (offline) 2PTZ Yes No Tracking accuracy and high-
est target resolution
[4d) Yes Yes (offline) 2PTZ Yes Yes Tracking accuracy
Ours No Yes (online) 1PTZ Yes Yes Tracking accuracy

the measurement process. Other works that control the lieregth to keep the imaged size of a
single object constant were proposedﬂ [_3_5@5 37], butidoBalization uncertainty is taken
into account and the extension to multiple objects is noiai

Sensor management for the task of multiple object trackiragidressed i [38]. Here track-
ing is performed in the image plane and therefore focal leagltection cannot be used to improve
the accuracy in 3D object localization. Multiple zoomingreas which give a 3D representa-
tion of target positions are considered|ﬁ|[39] for the mtdtiget scenario. In botﬂBS] aHE[39]
the evaluation is carried out with ground truth data (i.eurses of error from the detection,
tracking and and data association stage are ignored). AlMbrks described above optimize
over a single step look-ahead (i.e. myopic) except for ththotkin ] which optimize over
multiple step ahead for the task of tracking a single movinjgct. However testing is conducted
with single object in a constrained simulated environmeit @nly the zoom is managed.

Recently novel sensor management approaches with realitiplementations has been re-
ported in ] and|E3] with convincing results. The netwadmera system described [12]
comprises a total of eight cameras, four fixed and four PT2. fiXed cameras are processed at
a resolution of 32& 240 while no image processing is performed on the PTZ views. SEnsor
network in E,’B] includes nine PTZ network IP cameras withsotetion of 320x 240 pixels and
12x optical zoom. In this system the control of the PTZ paransetemodeled as a multiplayer
game where the cameras gain by reducing the error covarddribe tracked targets or through
higher resolution feature acquisition, which, howevemes at the risk of losing the target. The
work in @] proposes a distributed approach to optimizdéoter scene analysis performance
criteria through distributed control of a dynamic cameravoek including the uncertainty of the
targets. All these works adopt a large number of stationaB/T& cameras operating in a coor-
dinated way (typically in master-slave configurati@ @]).4Although these approaches could
be in principle applied to the case of a single camera we araware of any work investigating
in this regard.

In Tab.[d we give an overview of the main characteristics fons of the methods described
above and our solution. In particular, we highlight the mdifferences in terms of: necessity of
synchronization between the sensors involved in the nétveatibration of each sensor, number
of cameras, number of tracked targets, occlusions managesne the cost to be optimized.
In particular, the cost to be optimized can be: the accuradyacking the targets (Tracking
accuracy), the necessity to maintain constant the size mhvthe object is observed (Costant
object imaged size) or the necessity to obtain the highestiugon for the object of interest
(Highest target resolution).



Computational Model.The sensor management problem is generally approachecasin
under uncertainty according to Markov Decision Processt#3Rs) [24]. Such framework ex-
plicitly models the temporal state evolution and designsley for selecting the action based on
a reward function. However, optimal long-term solutionffesufrom combinatorial explosion,
for this reason suboptimal approximate methods must beeajpl

The non-myopic strategy can be optimized with a Monte Callout strategy as described
in [43,[44]. These approaches address the solution for IiBEs while small problems can
be directly solved with Dynamic Programmir@[45]. There tave basic variants for estimating
(online) an approximate strategy of a MDP and both thesentrican be classified based on
the length of the planning horizon, namely: Monte Carlo Tésarch methods (MCTﬂ46]
and Reinforcement Learning (RL) based methbds [47]. Theadorguide the search using re-
sults from rollouts in the decision tree of the actions arelaspropriate for the finite horizon
case. The latter are most indicated for finding approximeligiens in the infinity horizon case.
The method that we investigate here is focused on finite brénd includes sparse sampling
techniques for direct approximation of the Bellman equati@s described irEhS]. A relevant
application of this technique has been recently present@ﬂ for the task of tracking vehicles
from radar imagery. The rollout approach driven by inforimatmetric is exploited to capture
the long-term reward due to expected visibility and ocansif objects.

Another application of MDP, hidden MDP (hMDP), is proposa@], where a target mov-
ing in the scene is modeled as an agent for which the state igdsition on the plane and the
action is its future direction. In this work the goal is toiesite the policy it is following in order
to forecast its future behavior.

3. Contributions
Our contributions with respect to the related work are:

< A well-founded theoretical solution for the informatidmebretic management of an active
camera, which keeps into account all the typical sourcegrof ef a tracking system:
detector performance, limited field of view, occlusions agtargets, variable number of
targets. The solution has been divided in two techniques:noyopic, introduced i@S]
and here fully detailed in all the mathematical derivatiaihe other technique is a non-
myopic minimization strategy that can more effectivelyldei¢h a high number of targets,
occlusions among them and the mechanical constraints atinera.

¢ We adopt the sampling method 48] to handle large Péri@thservable MDP (POMDP)
and modify it to further limit the computational cost.

* We improve the evaluation of the whole method with respecprievious Works|E8]
and [39] in which ground truth data are used as objects meamnts, and use standard
metrics for multi-target tracking evaluation.

« We firstly show how to task a single PTZ camera according tuphisticated sensor man-
agement strategy to support multiple object tracking in axgiid coordinate framé__[_iZ],
and demonstrate it working online in a real scenario.



4, MDP with Information Gain Reward

4.1. Baseline method for multi object tracking

Similarly to [ﬂ] and EB], our baseline multi object trangiuses Extended Kalman filter (EKF)
for each initialized target. Pedestrian detection [51]ssdito extract object observations, and
the Hungarian algorithnﬁ!‘EZ] is applied to associate ead®niation to the corresponding EKF-
filter and to initialize a new filter in the case of unassodaibservations.

At time t, the real object stats;, and its estimationx;, include its location in world coordinates
and its speeds = [Xgy, Yai, X Vel Ts Xe = DX WS X W17, The observatiom, = [ug, v] 7, i.e.,
the target location on the image plane, only depends on tirerdustate and on the actiag,
that is selected from the finite sét which comprised different possible actions each of which
corresponds to a particular PTZ camera pasée, 0, f) € A (the pang, tilt  and focal length f
respectively). Formally, we have:

& =f(s—)+m, m~N(OU),

1
o =g(s.a)+m N~ AN(O,V), @)

wheref(-) andg(-) are the motion model and the observation model, respégtiveandn; are
the process and the measurement noise WigndV their respective covariance matrices. In
particular, the functiomy(-) represents the homography from the world plane to the irpéagyee
parameterized by the actions defined in theaget

Letx; be the predicted state estimate at tityiee. before having made the observation athile

X{ incorporates the observation. The final estimate for thte stitimet, x;, is eitherx; or x;,
depending whether the target is observed or eaj,(when the camera is not pointing at it, or
the detector misses itR;,P{ andP; are the covariance matrices far,x; andx;, respectively.

If the target is not observed, orky andP; are considered. The EKF equations are then:

X; = FXe1,
Py = FTP._1F + U,
Kt = Py Cx(a)(Cx ()P Cx(a) + V), 2

X =X + Ke(or — 9%, &)),
Pf = (I - KiCy (a))Py,

whereCy(a) = Vxg(X, &)lx=x; IS the linearized homograplyevaluated in; andF is the 4x4
matrix that models the system dynamics. Importan@ly(a;) depends on the action, so that
diverse camera poses lead to different observation matréecel different estimations faf and
Pf. Itis worth to highlight that also the zoom modifies the lirieed projection matrixCy(a;); in
fact observing a target with an higher magnification willgwoe a smaller covariané¥ [é].

Egs.[2 can be seen as modeling the transition probabilitiehé MDP (see Fid.13). To
complete the MDP model, we need the reward funcR@x, a;), which tells how informative is
a given actiorg; performed in the state . Notably, the reward must depend xn(not onx;),
since we want to select the actibeforeperforming the observation. Given the reward function,
at each time step we can evaluate its value for all the p&saittionsa; € A, choosing the one
which gives the maximal reward.
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Figure 3: Graphical representation of our approach.

4.2. Information gain formulation

In designing the reward functioR(x;, a;)) we directly relate it to the expected information
gain I (x¢; ofla;) between the state, and the observation;, for a given action. In practice, it
expresses the amount of information shared between stdtetmervation. Adopting the same
formulation of EB], we can write:

& = argmaxR(x; ;&) = argmax (x;; orla) =

) | ®
= argmaxH(x;) — H(xfor. &) = arg minH (xlor, &),

whereH (x¢|o, &) is the conditional entroﬁ/ Thus, we want to minimize:
H(x/or, a) = (4)
== f p(orfar) f p(xtlor, &) log (p(xtlor, a))dxido=

= Qp(ot|at)dotH(xt+) + p(orlar)doH (x; )=

oX

= ar(@3)H(X)) + (1 - ar(@))H(x;),

where we split the domain of integration fpfo|a;). Q; is the set of points in which the target is
visible, =) is the set where it is not visible, i.e., it is out of the camiéetd of view (FoV), is
occluded, or is too small to be detected. Assuming the digion forx; as Gaussian and being
the system in Eq§] 2 linear, we can derive the enttdpy) directly from the EKF equations. In
fact, the entropy of a Gaussian distribution only depend'ﬂsomvarian@ and Eqgs[R provide
P if a allows to get the observation for the target, &dotherwise. For more details, s@[53].

5The conditional entropy for two random variabbeandy is defined a$d(xly) = — ff p(x, y) log p(xly)dxdy.
The entropy of a Gaussian distributed random vexteiR" with x ~ (i, X) is: H(x) = o+ % log((2n)"IIZ1]).
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In other words, to ensure maximal expected information ¢éif o;Ja;) we need only to
consider how the term(a;) varies for different actions;. Intuitively, such term estimates the
probability that at the next step a target will be observethieycamera, as a function of the pose
of the camera itself. Extending t independent targets correspond to sum up the information
gainsly for each targek.

5. Modeling real world scenarios

As analyzed in the previous section, the formulationr(d;) in [@] is limited, since it ne-
glects aspects of real world scenarios. We model (a) thbildgiconstraint, accounting for the
physical dimension of the target in the current field of viéiy;a realistic person detector whose
performance varies according to the occlusion ratio anéhlaged object size; (c) the occlusions
between the targets that considers the relative positietwsden the imaged objects (evaluated
through sampling); and (d) the mechanical speed limits nfeza motion. The variability of the
number of targets is managed through the patrolling term @].

5.1. Modeling visibility and detection factors

Introducing the visibility constraint requires to defineoperly the set; in Eq.[4, while
introducing the estimation of the detector performanceliespo modify p(oia;). Letd; be a
binary variable which is 1 if the target is found by the deteetnd O otherwise. In practice;
tells us whether the Kalman filter will be updated with a neweatvation or only the information
from the previous prediction will be considered. Hence,#Eqgan be modified by considering
this new variable:

H(xtlot,dt,at)=—ffp(ot,dtlat)

)
fp(xt|ol» d;, &) log (p(x¢lox, dt, a))dx.dordd.

Let us start by analyzing(oy, di|a;) and introducing some assumptions. Fipgt:la;) = p(o;|a;)
(whereo; = g(X;,a) ) since the actual observatian is yet not available when selecting the
actual actioray/. In this way, we assume that the expected positions of tigetson the image
plane only depend on the prediction of the state and theract8econd, we assume that the
visibility of a target only depends on its position on the gaglane, being unaware of obstacles
or other occluders in the scene. Therefore, the tpfon d¢|a;) in Eq.[3 factorizes as:

p(or, dilar) = p(orla;) p(dilor, a). (6)
Beingd, binary, Eq[5 may be rearranged as:

Hxlor dh, @) = f  plola)doH()+

N fﬂ PUOJa)P(d=000, 2)doHOG)+ "

" f p(oa) P(di=L0r, a)doH(x?) =
O

=(1 - a(@)H(x;) + a(@a)H).

7In the remaining, for the sake of clarity, we omit the apeixom o, if not otherwise specified.
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Table 2: Comparing the miss rate as a function of target sizedmet HOG pedestrian detector and the parametric
estimation proposed in this paper. See Elg. 4 for the corretipg plots.

target height [pixel] 32 45 64 91 128
HOG (dashed orange)| 0.928 0.8272 0.696 0.473 0.350
estimation (solid black ) 0.900 0.792 0.657 0.503 0.350

where we also suppose that a detection is possible only dliservation is visible in the image.
In conclusion, we just need to compute for any possible actithe weighta(a;):

o(a) = fg p(0a) p(di=1i0r, a)do. (®)

Now, to preserve the Gaussian distribution and therefaretficient integration for the weight
a(a), the two pdfs in EJ]8 and the integration dom&irare defined as follows.

Observation Distribution. (m|a;) is the predicted distribution of the observation. Basedhen
prediction of the state from Edd. 2, we haye- N (o}, Z,,), Where:

0f = Cx(@)x, Zo =Cx(a)P Ci(a) + V. 9)

Visibility Probability. Q is the set of possible observatiofm} for which the target is fully
visible in the camera field of view, considering the limitéziesof the image plan& c R2. In
defining such set, we originally extend the work|E|[39], adsider the spatial dimension of
the targets, assuming that objects are almost verticalogrtund plane and that their projected
height is known for at least one target. Since we know theresitr calibration parameter for the
camera, we can estimate the head posiggn) on the image plane for a target whose feet are
in o, through the homolog¥,, , as in [54]. The se®; is then defined as:

e & o eSAeg(q)eS. (20)

To integratep(ot|a;) on the set of points defined above we linearize the homolbgyugh the
Jacobian,, = VoWa oo Of W5 aroundo;. Therefore:

a~a+Ja(0-0)., & =TW(o) (11)

Assuming that people are vertical in the scene, and thatibhgé plang-axis is vertical, we can
discard the horizontal component getting:

Y=Y+ dan 0 - ) =% (12)

In conclusion, they coordinate for the head is linearly obtained from thg coordinate ofoy,
thus the integration on the image plane is still equivalerintegrating over a rectangle whose
sides are parallel to they axis.

Detection probability. fdi=1|c;, &) is the probability that a target will actually be detectécdg

its position in the image plane. In practice, we considet tiva performance of any pedestrian

detectors depends on the heighof the target on the image plane (in pixels). We estimate such
10



Estimated model for detection-recall varying the target size. K, =0.0098, hy=21.291. (Black line) HOG on Caltech Dataset: Detection Rate Vs Occlusion Ratio
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Figure 4: Left Black curve is the function that we used to model the pedestiietection recall as the target size
varies (original plot from[[55]) Right HOG pedestrian detector performance for targets with riffeocclusion ratios.
The performance are obtained from the Caltech PedestriaasBtatising the HOG pedestrian detector implemented in
OpenCV. The plot shows that the dependency of the pedeskei@ator performance, as a function of the occluded area,
can be approximated as linear.

a relation with the functiop(d; = 1) = 1 — e X«("=T)1(r —r(). The two parameter§y = 0.0098
andrg = 21.29 are extrapolated from the performance of HOG pedestgatettbr on the Caltech
Pedestrian Dataset, reportedm ﬁﬂ]/lore details are given in Talbl 2 where we report the miss
rate values as a function of target size for the HOG pedestiégdector and compare them with
the parametric estimation used. Hifyl&ft) shows the miss rate values for all the other methods
reported in].

The target height; = [y — V7| = (Y — ¥§) can be computed as a function of the observation
yf and the camera positiam, exploiting the homology:

n=[0 1]l o-a [=[0 1][(l2~Ja)o~Wal0)) - Ja0(] = .
=[ 0 1][mol+[ 0 1|[-Wa(0)-Ia0f] =T+t

Linearizing the homology around the expected observaijogive us the exponential function:
p(di=1lor, &) = 1 — g KaTiortro), (14)

where the matrix; andt; are constants depending on the linearized homology, sd€Z=d.he
product of the Gaussian distributiqafoy|a,), Eg.[9, and the exponential function aq Eq.[14,
gives another Gaussian distribution:

8Since in our implementations we use the HOG pedestrian deteetoestimate the parametefg andrg for the
performance of that detector. The same procedure can be @pplEny other detector for which the miss-rate as a
function of the target size is given.
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p(oday) p(de = 1oy, &) =

- (1— explt - ro) exp(~KaT:0)) exp(—l(ot )T Yo - u)) -
2n|X|2 2

1
——|exp-=(0 - )" =0 — ) +
Ile( p 2( 1) Z7 (0 — p)

(15)
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Thus the weighi(a) in Eq.[8 can be numerically computed as bounded integrafiarGaussian
distribution, and the boundary are modified to require thathinimum target height is.
At this point we have introduced two factors that increagertfalism and completeness of the
proposed model, while maintaining a low computational émsthe reward function. In the next
sections the management of occlusions among targets wilitteduced to further reduce the
difference between the expected information gain and takinéormation gain obtained from
the camera.

5.2. Occlusions Handling

Occlusions represent a serious problem for the selectidheo&ction due to a wrong esti-
mation of the information gain for a target. In fact, beinglosions not modeled in the above
formulation, even an occluded target would bring a contidsuto the expected information
gain, which will not correspond to real information gain @ibed after the action is performed.
As analyzed in[[55] the larger the occluded area for a tatgehtore probable that the detection
algorithm will fail. Without any information on possible dading obstacles in the field of view,
we can only keep into account inter-occlusions among target this aim, we introduce a term
that estimates the ratio of area of a person occluded in &mdy resembling the depth-sorting
method of[Eb]. In practice, we build a binary occlusion magkch indicates the occluded pix-
els for each target. From now on we slightly modify the natatintroducing an index for each
targetk € K (with |X| = K), since we will have to consider also the dependencies artvemgr
more targets.
Formally, letc® € [0, 1] be the ratio of the bounding box of the target which is Vst timet,
we can estimate the relation between the probability ofdietg the target and its associated
by injecting this variable in Eq]5:

H(lol, ok, ok, &) = f  plel)doHO )+

+ fg p(oklay) f p(d=0lok, a, ¢ p(c1ot, a)dc doH (x; )+ .

+ fg p(oklay) f DA =10k, a, ¢ p(ciok, a)dcidotHx}) =

= (1- a())HOG ") + a(éit%H ().



As for the previous case, we just need to compute for any Iplesattiona; a modified version
of the weighta(a):

o (@)= fg p(oklay) f p(d=11c, of, a) p(ciok, a)dcido, (17)

which requires to definp(df=1|ck, of, a;) and p(ck|ok, a).

Detection Probability with Occlusion TermWe assume that the effect of the occlusion ratio
and the target size on the detection performance are indepenThis leads to the following
factorization: p(d¥|ck, of, a) = p(d¥|ok, a;)p(d¥|ck), where the first factor has been computed in
Sec[B1L. To estimatg(d|ct), i.e., the effect of the occlusion on the detection perfamoe, we
use again the Caltech Pedestrian Datdset [55], obtainm@ltts shown in Figl4ight). We
choose to approximate this relation as linga(d{=1/c) = ck.

Computing Occlusion Ratio for each Target(ciof, a;) estimates the distribution of the occlu-
sion ratio, given the observation for the targetnd the camera position. This term also depends
on the position of the other targets in the scene (collelgtinelexed by ™), so we need to expand

it as:

p(cilot. a,) = f P10, a) p(oa)do ™. (18)

The termp(ck|o”, a) expresses the visibility probability given by the ratio wible versus
occluded pixels:

. [l g xtaddu
ch), = s 19
T T ey (19

wheres(x < x;¥a) is a binary mask that takes value 1 if at pixed part of targek is observed,

p(ctlo”, a) = o(ct -

and 0 otherwise. The other terﬁﬁ(x'ﬂat) measures the whole target area.

The main limitation of this formulation is that it is not pdisi® anymore to compute the infor-
mation gain for each target independently, since the velatdsition among targets is considered
when estimating occlusion, and it is also not possible tofuathep(ct) in closed form.

Therefore, at each possible camera pose we apply a Monte &aploach sampling from

POG xS xe) = TR pOG™), M sets of positiongx; ... %K ... &< for

tjo ) =M

all the targets. Then, for a candidate actigrthe corresponding weigh#(a;) is estimated from
the related sets of observation predictio{i%j, . .,G{fj, .. .,6{?1}]:1 E computed according to
the model of Eq.I2. Each of this spis used to evaluate the inner integral in Eg. 17:

ak, = f p(af=1ick, & a) p(ckiat, )k (20)

providing the detection probability of the tardein the samplg. The finala®(a;) for the target
k is therefore computed replacing the integral in[Eq. 17 wisimmation over the samples:

1 9.
Kiay K
(&) = M j§:1 dij- (21)

The conditional entropy for that target is then computecbediog to Eq[¥. The sum of the
contribution of each target provides the information gaindll the targets.
13
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Figure 5: The comparison between the expected informatiam fgaithe most promising actiori(x:, o7 |a;), used as
reward function, Ed]3, and the actual information gain teatbitained with the observation from the selected action
I(X;, orlaf). This test is performed on the synthetic experiments, see[®earying the complexity of the reward
function. a) comparison between the expected and realized informationugiing the reward function that only keeps
into account the visibility criterion, Eff] &) same as before but obtained by keeping into account the peafare from

the detector, Eq]7¢) keeps into account also the occlusions among particled_ @&aqwith M = 100. d) shows the
differences for the 3 case on a statistic of 12 runs of 50 fragaes. Note that the difference decreases as the model
becomes more accurate and is close to 0 for the last formulatticase c).

argmax Effective
information gain
with the sample
observations
average

Figure 6: Graph of the algorithm for computing the expectddrination gain with the occlusions estimation, Eql. 16.
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5.3. Modeling the camera mechanics: action set reduction

We want to model the mechanical constraints that define thef @sitions reachable from
the current pose, in a given time interval, of a real PTZ cam@&iven the set of all the possible
camera actionsA and the previous actioa_; = (¢_1,6:1,t-1), an action ¢,6,f) € A also
belongs to the set of actiod;, reachable at the next tintgif:

| — pr_1] < AP A0 — 1] < AO A |f —fioq| < A, (22)

whereA¢ andAg are the maximum displacement allowed in the unit of time lierpan and tilt
angles and\f is the maximum variation in the zoom, that can be easily iobthby combining
the expected system frame rate and the camera specifications

5.4. Patrolling term for new target detection

To take into account for new targets occurring in the scéreP{lTZ has to randomly patrol,
looking for new evidence. To model this factor we get ingjpdrafrom @], where an additional
term I ,(b¢lay) related to the patrolling around the scene is defined. Sactoff estimates the
information gain that could be obtained performing an actpdue to the detection of a new
targetb;.

When combining the information gain on target position utaiaty with the patrolling term

we obtain:
N

(@) = D710 0far) + Bl p(bilay), (23)
k
whereg is the weight that mixes the two quantities.

With this last element we complete the definition of the MDBaasss formed by the EKF
equations plus the reward function. In particular,[Bqg. 8 BqdI7 characterize the two proposed
versions, the first more efficient and the second one more lexnphich also takes into account
the occlusions. Ald.]1 shows the pseudo-code for the vemsitinthe occlusions handling.

Algorithm 1: Algorithm for the myopic approach

Input: number of sampleMl, action setA;, generative-model G (EQ] 1), state
Output: selected actioa*
for each targedo
| generateM samplegX;} from G
end
for eachain A; do
for each targetlo
get observation set from sampiés= g(x¥, a)
compute visibility termy*(a;), Eq.[IT
compute the conditional entropy gain, El. 7
end
Get whole information gair;(a), Eq[23
end
Returna* = arg maxez, {1¢(a)}

15



6. Non-myopic approach

The solution proposed so far is myopic, i.e. the action to &dopmed at the next step
is selected only considering the current system state an@ridiction for the next time step.
Better results could be achieved if we design a non-myopicagzh, where the reward function
to be maximized considers more than one step in the futureorAmyopic approach would
outperform the myopic one when there are terms which are-vami@nt: a visibility map on the
scene (trees, houses or other occlusion that could prelverttacker from working properly),
occlusions between targets that move close to each othéasget that is leaving the field of
view or a target that is going far away from the camera whesdlibe no longer visible. Indeed,
these are all examples of a realistic scenario, that we veatatke into account. On the other
hand, reasoning on a longer temporal horizon requires asgrecodeling of the target future
behavior in order to produce a reliable prediction of thgéés trajectories.

6.1. Look-ahead algorithm

To solve the non-myopic approach we use a sampling stratesgpyréed by], that allows
approximate computation on a MDP with very large or infinit@ensionality of the state space.

Algorithm 2: Algorithm for the non-myopic approach
Function: comput eQ( ,M,A,y,G X_1)
Input: horizon%, number of samplebl, action setA, discount-factoty, generative-model G
(Eq.[d), statex_;
Output: rewards Qf (x., @), ..., Q (X, a))
if h=0then
| Return(Q...,0)

else
For each target generalté samplegX;} from G

For eachain A getz= (X, a)
ComputeQ; (%.@) = 1(%.4a)
Take ther,L actions with highesQs (%, a), for them get
Qi (%, 8) = 1(%,Z @) + y X5 conput eV(h — 1, M, A, y,G, %)
Return Q5 (%, a1), ..., Q} (X, ax))
end
Function: conput eV( 7#,M,A,y,GX;)
Input: horizonk, number of sampleMl, action setA, discount-factoly, generative-model G
(Eq.[), state;
Output: valueV(x, k)
Lgt .
(Q5 (Xt @), ..., Qp (X, ak)) =conput eQ(A,M,A,y,G X))
Return maxa,....aq {Q; (X 8)}
Function: Sel ect Acti on( 7,M,A,y,G X 1)
Input: horizonh, number of sampleBl, action setA, discount-factor, generative-model G
(Eq.[), statex;_;
Output: actiona* A
Let (Q} (X, @), ..., Q' (X, &)) =conmput eQ (7, M, A,y,G Xi-1)

The main idea is to estimate the future dynamic of the modeHoypling the future observa-
tionsz from the p(oyx; , @). The sampled observati@nare used to update the sté&teaccording
16



to the p(x/o;). The prediction and sampling iteration are repeatedtitedg in future steps and
at each step the information gain is computed. The globakinétion gain is computed as a
discounted sum of the current and future steps.

Let L be the maximum number of possible actions that are reackrabteany actiore; and
M the number of observations to sample at each time for eaadnadExploiting the notation
of [IE], we define the selection of the best action at tiroeer the finite horizor as:

& = arg maxQ(x., &, ), (24)
with:
Qlae X1, ) = Y (10 Zla) + V(% = 1),
V(X1 h) = rgthZ(Q(am, Rie1. 1), (25)

Q(ar, Xt-1, 1) = 1(x;; orla),

wherey is the discount factor parameter. Such parameter balaheesontribution of the in-
formation gain expected at the next step and the informaj&in expected on later steps. A
complete recursive description of the algorithm is giver\g. 2 while Fig.[7 gives a graphical
representation of the procedure. At the final step, in thesleaf the tree we can either compute
the information gain considering also the occlusion thiotige sampling procedure or compute
the closed form reward, that discards the occlusion effects

We add the pruning parametgy that allows to reduce the size of the tree to be explored,
discarding the least promising actions at the current Step.computational cost (L - K) for
the myopic case and((K-L)"-(M -rp)h‘l) for the non-myopic. The pruning factog is essential
when considering a system with many possible actions, wietset, = 0.1 in our experiments.

6.2. Summarizing samples for efficiency

The non-myopic approach should be extremely effective se ad occlusions that are con-
sidered in the look-ahead procedure via sampling. The nuwfeamples that can be used in
our approach is really limited due to exponential growthiaf tree in the number of samples.
In fact, each new sampled observation generates a stateeftraicking algorithm that must be
propagated in the future. On the other hand, a small numbsaraples gives a very rough idea
on the expected state of the targets, in particular whethesuld be visible or not.

We would like to better predict the expected informatiomgéeeping a reduced size of the
tree, i.e. keeping the same computational complexity &k 1. To achieve this we first sample
M observations for each action and compute the expectedhiatayn gain, but then these data
are merged, resulting in a single updated value for the filate. This state = % Zi'ﬁl X;j is the
average of the states corresponding to each observatithislway, we do not have to generate
a subtree for each of thd sample, but a single subtree for each action, as shown ifilFigs
varianceP is computed as the weighted geometrical mean between nagpbeserve the same
information gain,|[58]:

P = (P)H((P) 2P (P) 8)"(P)%. (26)
such definition ensures thatff andP~ are symmetric and definite positive, alBes. Moreover,
the entropyH associated to a Gaussian distribution with variaRcis exactly the weighted
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Figure 7: Scheme representing the selection of the besnéttiough the look-ahead algorithrbeft Look-ahead opti-
mization according to the original method from![48] applied&i]; Right: proposed approximation whigummarizes
the samples at each horizon.

arithmetic mean of the entropy associate®tandP~, with weighta. This property guarantees
that the entropy obtained averaging over the samples isthe as the entropy associated to this
new statex:

1o 1
HE =37 2, HE%) = 17 D diHG)+
j=1 j=1
L (27)
+MZ;(1—C~JJ-)H()~(J»’)=aH()~(+)+(1—a)H()”(’),
J:

wherea = % Z}‘il aj. By applying this procedure we propagate only one subtreemon to all
the M observations, thus the computational complexity redus€¥{@ - L)" - ri~* - M), which

is linear in the number of samples instead of exponentia¢ Stmmarization causes the loss of
the multiple modes, represented by the samples, which amgropagated to future steps.

7. Extension to multiple cameras

The method presented in the previous sections describdgaittam for efficiently and au-
tomatically managing a single PTZ camera in a standard #tartjiet tracking scenario. The
extension to a network of multiple PTZ cameras may be obthineseveral ways. For exam-
ple [39] proposes a sequential Kalman filter to combine, @update stage, the observations
of the same target as seen from different cameras. This agipican be applied also to the in-
formation gain formulation we proposed. Consider aGeif N. cameras which successfully
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observe a target; at timet, the covariance resulting from the successive observatioording
the sequential Kalman filter is the product:

P = []‘[ (- Kfcf)] P (28)

ceC

As observed in[[39] this equation depends on the order in hvhich camera is considered,
mainly because it does not take into account the fact thate@icould miss a target, iefaf) <
1in Eql3. All the possible combinations are exponentiahmriumber of cameras and therefore
not suitable for an online application. Hence, we approxintiae updated covariance for a single
camera withy(af), from the weighted average of Hgl26:

PS = (P°7)2((P°7) 72 (I - K{CP) PP~ (Pe7)2) (o), (29)

Then, the information gain for a single target across migltiameras is obtained by successively
iterating such computation for each camera, substitiRfrig= Ptc_l.

The formulation is similar to the one proposed|E| [39] exdepthe fact that Ed.29 replaces
the weighted sum. As introduced in SEE. 6, [EG. 29 guaranteeshte entropy related to a gaus-
sian distribution with covariance’ is the weighted sum of the entropy due to covariares
andP{*. This modification does not affect the computational costygared to|E9]. Indeed, it
is exponential in the number of camer@g((K -L)"-r~*-M)™), since all different combinations
of actions for the different cameras need to be evaluated.

8. Implementation and Evaluation Details

Experimenting PTZ tracking solutions is a classic problentaemputer visionlEQ]. The
current protocols span between being quantitative andegityfrepeatable with a low real-
ism [Zé%@ , and considering real scenarios, where eadhgepialitative and cannot be re-
peated@S 0]. Here, we consider both the cases, provaisgnthetic and a realistic exper-
imental benchmark, which are quantitative and repeataioiecluding with a real experiment
where our approach has been implemented in a real-timeikanee platform.

A direct comparison with the methods similar to olirs [ﬂl@ described in Sefl 2, is not
possible without changing their own network architectumeniber of cameras and the way they
communicate), or the experimental protocol (data and giowth information used by previous
works). One of the main features of our system is that it iretegs both the multi-target tracking
module and the camera management on a single PTZ devicgditfy from m] which requires
a set of fixed cameras to track the targets and then drive tlecBiferas towards the target of
interest. BothlEﬂO] perform live experiments on theinovideo-surveillance network, hence
it is not possible to perform new tests on the same sequences.

We tried to compare our method with the solution propose&j, [which is the only one
focusing on information theoretic management for a singlg amera. In particular, this is ob-
tained by simplifying our method (without the detector penfiance, the occlusion management
and the look-ahead optimization) in order to obtain an im@etation as close as possible to
their method, apart for the fact that we are tracking thedi@rign the ground plane, instead of the
image plane as they do. Results in $é€.9, 10 demonstratehétmntributions proposed in this
paper allow to outperform [38].
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8.1. Experimental Setup

We have performed two kind of experiments, synthetic antisteg for both myopic and
non-myopic strategies in order to quantitatively and datliely asses the performance of our
approach. For the myopic method we have also performed axpatiment with an off-the shelf
IP PTZ camera (Sony SNC-RZ30P).

The synthetic scenario consists in ax55m area, with 7 targets following random trajecto-
ries mimicking human motion, Fifll 2 (a). The targets are gna the scene, thus the exploration
term |, in EQ.[23 is not considered. We run 12 different sequences 8@ frames long, with
diverse target trajectories, and compute the final scoresaging the per-sequence results. In
each sequence, we manage 350 target instances, which hbeedietected and associated to
tracks. The action set has 4 steps for the zoom, 7 for pan angl&0 for tilt anglei(e., L=280
different actions). To model the mechanical constrainesdédmera can move by a maximum
displacement of 2 steps for the angles and 1 for the zoom.

For the realistic experiments, as compromise between ta&ipiéty and realism, we consider
here the PETS 2009 (S2-L1-Viewl) benchmark, Elg. 2b, whetrinsic calibration matrix.
and the extrinsic calibration information are provided.r Feproducing the PTZ zoom 1, we
reduce the 576768 resolution to 120160. The homograph@y, for this virtual camera to the
3D plane isGp; = KCRptZK,;tlz, whereKpt, andRyy; are the intrinsic and the rotation PTZ matrices
(defined empirically). The original extrinsic calibratidata allow to map the ground plane to
the original sequence image plane and then, througliheto the virtual PTZ image plane.
The action set is made of 140 different actions, 7 for panegrigffor tilt angle and 4 steps for
the zoom. The mechanical constraints of the camera are ingpited as in the previous case.
The sequence is 795 frames longa and we sub-sample it eveayn2$. Globally, there are 19
different targets, for a total of 2322 true detections.

The whole framework has been implemented in MATLAB and it kgoat 10 fps for the
Gaussian integral solution of Hg. 8 an@® @ps for the sampling strategy of Hg.l21. However, it
is easily parallelizable both in the sampling stage and aluating Eq[b for the various actions.
Indeed, the evaluation of the expected information gainefeh action can be done indepen-
dently. WithA¢ = 2, A = 2 andAf = 1 the number of reachable actions varies between 18 (at
the corners of the grid) and 75. If enough parallel threadsw@ailable this can lead to a speedup
from 18x to 75x when computing the information gain for eacticm.

8.2. Evaluation Metrics

To ease future comparisons, we adopt standard multi-tén@eking metrics: the Multiple
Object Tracking Accuracy (MOTA, the higher the better) whiells how reliable the tracks are
and the Multiple Object Tracking Precision (MOTP, the lovles better)l], which measures
the error in localizing the tracked targets on the groundi@laln addition, we calculate the
average height of targets as detected in the image, ana!lygo@]: the bigger a target appears
on the screen, the more information could be extracted fgidri level tasks (recognition, re-
identification etc.). Other important parameters for apiatténg the performance from different
strategies are the number of detections on the whole seguemitthe average zoom value for
the camera.

We use three comparative control strategies: ‘fix’, keephgcamera fixed at the lowest
zoom (1x), ‘patrol’, scanning the field of regard accordingtpreset sequence, ‘random’, per-
forming actions randomly chosen from the sét
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Table 3: Synthetic data, ideal detector: comparison amongiatd strategies and the information theoretic strategy,
with and without the sampling (M=100) to cope with occlusions

MDP
‘intg” | ‘smpl’
MOTA 946 % | 87.6% | 79.7% | 89.9% | 97.0%
(MOTP [m]) | (0.26) | (0.35) | (0.45) | (0.23) | (0.21)
Height [pix] 49.1 102.6 | 64.4 91.4 89.0
# Dets 278.3 75.8 55.5 | 186.3 | 214.2
Zoom [X] 1.00 2.54 2.53 2.05 2.00

Strategy “fix’ ‘patrol’ | ‘rnd’

Table 4: Synthetic data, realistic detector: comparison @nstendard strategies and the information theoretic syyateg
with and without the sampling (M=100) to cope with occlusions

MDP
‘intg’ | ‘smpl’
MOTA 56.6 % | 58.8% | 14.0% | 67.2% | 72.8%
(MOTP [m]) | (0.46) | (0.47) | (0.67) | (0.33) | (0.29)
Height [pix] 57.7 106.4 | 845 | 121.6 | 1223

# Dets 54.5 38.3.8 | 15.0 80.0 89.8
Zoom [X] 1.00 2.54 2.46 2.64 2.61

Strategy ‘fix’ ‘patrol’ | ‘rnd’

We exploit the occlusion term of EQ.J17, comparing the Gausiitegral solution of Ed.] 8,
namely ‘intg’ (that represent our implementation |ofl [38})th the sampling strategy of EQ.121,
namely ‘smpl’.

9. Myopic Experiments

9.1. Synthetic Experiments for the Myopic Strategy

Two different experimental sessions are performed on théhsyic scenario, comparing the
formulations proposed above for two different types of mtden detectors.

A first session considers a perfect detector, whose perfiwendoes not decay for smaller
targets, but still worsens when the target gets occludesijiteeare in Tad]3. The following
observations can be made: (1) both the ‘intg’ and ‘smpl’ apphes outperform the competing
PTZ strategies ‘patrol’ and ‘rnd’, both in terms of MOTA andVIP; (2) the ‘fix’ policy is the
best among the competitors: actually, it detects a largebeurof targets (see # Dets), even
when they are small, due to the perfect detector; (3) theargments of our approaches are
mainly due to the zooming on the targets (see Zoom [x]), whizth creates more reliable tracks
(higher MOTA) and better localization (lower MOTP); (4) teempling approach, that prevents
the camera from observing targets which may be occludeggediatrms the ‘intg’ approach.

Note that when using the ideal detector and the ‘intg’ versighich discards the occlusions,
our method slightly differs from the approach [38]. Intffaim this case our approach only
considers the mechanical constraints of the camera andchifsécpl extension of the targets as
additional elements. Hence, results also show a clear weprent with respect tcﬂkS].

In the second session, we consider[Eq. 14, substitutingléed detector with a realistic one,
which simulates the HOG performance (i.e. it works worsearalbresolutions). Results are in
Tabl[4, leading to considerations similar to the previoss f€he presence of a realistic detector
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Figure 8: Simulated PTZ on the PETS 2009 datage). Original frame from the dataset, with the tracked targets
trajectories and the PTZ field of view (blacK) field of view for the simulated PTZ in the current position (resion

is 160x120 pixels)(c) Top view of the exploration map that is used to compute the eaptm term of Eq_23(d) Top
view of the warped ground plane where targets are moving, thélestimated trajectories and covariances.

Table 5: PETS dataset, ideal detector: comparison amongssthatlategies and the information theoretic strategy, with
and without the sampling (M=100) to cope with occlusions.

g | F=9 | B=1
intg smpl intg smpl

MOTA 80.6% | 50.7% | 30.6% | 75.2% | 76.5% | 64.8% | 81.1%
(MOTP [m]) | (0.20) | (0.29) | (0.39) | (0.22) | (0.22) | (0.18) | (0.17)
Height [pix] | 19.9 38.5 29.3 375 39.2 31.8 36.4

# Dets 2160 | 414 567 | 998 | 895 | 1524 | 1513
Zoom[x] | 1.00 | 2.00 | 1.55 | 1.97 | 2.08 | 1.63 | 1.87

Strategy “fix’ ‘patrol’

brings in general to worse MOTA and MOTP scores. In additibe, #Dets in the ‘fix’ case
decreases dramatically (it cannot zoom to increment thebeumwf detections), and, in general,
both the proposed approaches are better in this case. |rofacstrategies know that they need
to zoom more (see the Zoom values) to possibly get a detedigain, the advantage of keeping
into account the occlusion term is evident.

9.2. Realistic Experiments on the S2-L1-Viewl PETS Sequdenthe Myopic Strategy

A different experimental setup uses a publicly availablaset (PETS2009) and its ground
truth for quantitative evaluation. Figl 8 shows how a PTZ eearis simulated from the original
frame, and used to track targets on the ground plane, exygdite calibration data.

In a first test, whose results are in Tabh. 5, we employ the idet@ictor, extracting the bound-
ing box from the ground-truth and removing the occluded or8rce in this sequence people
are entering and leaving the scene, we include the expbortgirm (Eq.2B), testing two different
values fors. Considerations: (1) the sampling strategy gives betwiligfor both values g8,
in terms of MOTA, MOTP, and Height; (2) since we have all théedéons, MOTA is high also
for the fixed strategy. MOTP is higher with our policies, dadtte possibility of zooming. (3)
reducingB encourages to focus on the tracked targets (i.e., lower N@¥¥ead of capturing
new items. The best value f@rshould be a compromise between tracking accuracy and the
capability of capturing novel targets.

In the second test, we introduce a real implementation oHO& detector, enriching the
realism of the simulation, and therefore introduce in th@lementation the term in EG_114.
Results are in Talp] 6 and in general are dramatically lowem those in Tall.]5 because of the
many false positives and missed detections from the HOGctbete The improvement of the
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Table 6: PETS dataset. HOG detector: comparison among sthattategies and the information theoretic strategy,
with and without the sampling (M=100) to cope with occlusions

B=9 B=1
‘intg” | ‘smpl’ | ‘intg’ | ‘smpl’
MOTA 21.6% | 19.0% | 0.0% | 28.3% | 28.3% | 31.6% | 36.4%
(MOTP [m]) | (0.36) | (0.52) | (0.52) | (0.49) | (0.48) | (0.39) | (0.38)
Height [pix] 19.5 37.7 28.5 42.7 42.8 48.4 50.6
# Dets 1886 370 581 435 440 714 716
Zoom [X] 1.00 2.00 1.48 2.94 2.33 2.58 2.70

Strategy “fix’ ‘patrol’ | ‘rnd’

Table 7: Synthetic data, ideal detector: comparison amomglatd strategies and the non-myopic information theoretic
strategy with occlusion handling with different horizansy = 0.9, M = 100.

Strategy ‘fix’ ‘patrol’ | ‘rnd’ | A=1 | h=2 | h=3

MOTA 94.6% | 87.6% | 79.7% | 97.0% | 95.6% | 92.1%
(MOTP [m]) | (0.26) | (0.36) | (0.45) | (0.21) | (0.21) | (0.21)
Height [pix] | 49.1 102.6 | 64.4 | 89.0 | 88.6 | 947

# Dets 278.3 75.8 55.5 | 214.2 | 210.2 | 203.3
Zoom [x] 1 2.54 2.46 2.07 211 2.23

‘smpl’ method with respect to the competitor strategievident considering MOTA, this is due

to term in Eq[IH that pushes the camera to increase the zotimegpect to the previous case
of the ideal detector. The MOTP is slightly better for theBkrategy, but this is due to the fact
that it is computed only for the targets correctly trackédf are less than for the ‘smpl’ case.

9.3. Real Trials for the Myopic Strategy

We also tested our system with a real-time off-the shelf IZ Bdmera, Sony SNC-RZ30P.
In order to estimate the calibration parameters of the PTizeca while moving we use a method
similar to [62]. The action sefl is made of 462 actions corresponding to the following gridi: 1
values for parx 11 tilt x 3 zoom. The step between two pan angles is 10.4°, for the #lt3°,
and the zoom values are 1x, 6x and 9x. WeBset0.667 and used the ‘intg’ approach, due to the
real-time constraints. The whole system works online autfié fps for the tracker and 3 fps
for the action selection. Some frames (videos are in supghéany material) are shown in F[d. 9
with a detailed description. The method produces a cameiehvit able to fully autonomous
move in the scene, according to the utility cost, and resylth a “reasonable” behavior without
any supervision from a human operator or other sensorsctiviéemplementations of computer
vision algorithm on PTZ camera are really few, and as far akmaw it is the first time a
sophisticated algorithm is successfully applied to a stdade PTZ camera.

10. Non-Myopic Experiment

10.1. Synthetic Experiments for the Non-Myopic Strategy

A first session considers a perfect detector, whose perfuzendoes not decay for smaller
targets, but still worsens as the target gets occluded. IReme in Tab[177i = 1 indicates the
myopic approachi = 2, 3 address the non-myopic strategy, with horizon 2 and 3ecisly.
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Figure 9: An illustration of camera management with two targ€ssgets are marked with their 3D bounding box, the
covariance spread of the filter estimate is given by the @liffie camera chooses the position automatically, according
to the reward function defined in the paper. The resultingabieln produces the following patterns: (1-8) The camera
‘jumps’ between the targets to maximize their localizatiorcgien; (9-12) Once the two targets are well localized, the
camera widens its field of view to search for novel targetst(imesolors).

Many observations can be made: (1) for all the three valugs arid in terms of MOTA
and MOTP our approach outperforms the other competitors Tl ‘fix’ strategy is the best
among the competitors: actually, it detects a large numbéargets (see #Dets), even when
they are small, due to the perfect detector. The improverktite myopic approachi(= 1)
is mainly due to the zooming on the targets (see Zoom [x]) ctviioth creates more reliable
tracks (higher MOTA) and better localization (lower MOTR).this scenario the non-myopic
approachh = 2,3 does not improve the MOTA metric but provides higher resotuimages
for the targets. This happens because typically the seaokéd targets is divided on the future
steps, hence the camera precisely focuses on few targetstetime. Anyway being the detector
ideal, the targets are detected even when they are smak iimge, for this reason the MOTA
is at is maximum value foh = 1. For a deeper understanding of the non-myopic approach,
Fig.[10 visualizes the action selection process: the infion gain for all the reachable actions
is evaluated considering the contribution of each targetah horizon.

In the second session we substitute throughi Elg. 14 the idéatdtr with another one, which
simulates the HOG performance. Results are in [Thb. 8, lgadiconsiderations similar to the
previous test. In addition, the presence of a realisticaletérings in general to lower MOTA
and MOTP scores. The #Dets in the ‘fix’ case decreases dreadigtfit cannot zoom for taking
care of the detector) and in general all the comparativecgghres are better in this respect In
fact, our strategies know that they need to zoom more (se&dbm values) to possibly get a
detection. From these simulations, it seems that the be&tdmois (» = 2). This indicates a
natural limit of the system in going too far in the future, ahis is reasonable. If the target
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Image Plane. P:45.00, T-5.00, Z=2.0, Fx:300, Fy:300 Top View 3D scene. t=23 Image Plane. P:25.00, T:-10.00, Z=1.0, Fx:300, Fy:300 Top View 3D scene. t=24
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Figure 10: View of the environment for the synthetic experitaen two consecutive frames,= 23 24. In each of
the two frames, some useful data are shoajlmage plane for the PTZ on the synthetic scendsjolop view of the
ground plane where the targets are moving, their movement itelinm a square area of £85 metersg) Information
gainl(xt, ot|a;) for the 10 best poses (the contribution from the 3 horizoighted byy is highlighted), for each target at
each horizon this term is computed using Eqg. 7, the two terfad andH(x*) are shown in the other two plotsd) and
e). This figure shows a case in which the myopic and non-myopitestyavould choose 2 different actions:tat 23

the non-myopic chooses action 1, whereas the myopic wouldsehaction 2, since it cannot predict that waiting to look
the red target at= 24 would bring an higher global information gain.

Table 8: Synthetic data, realistic detector: comparison @nstendard strategies and the non-myopic information theo-
retic strategy with occlusion handling with different harnsh, y = 0.9, M = 100.

Strategy “fix’ ‘patrol’ | ‘rnd” | A=1 | h=2 | h=3
MOTA 56.6% | 58.8% | 14.0% | 72.8% | 80.8% | 71.6%
(MOTP [m]) | (0.45) | (0.46) | (0.67) | (0.29) | (0.31) | (0.32)
Height [pix] | 57.7 | 106.4 | 84.4 | 122.3 | 119.5 | 1231

# Dets 54.5 38.3 15.0 | 89.8 75.0 81.1

Zoom [X] 1 2.54 2.50 2.62 2.66 2.71
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Table 9: PETS dataset, using the detections from GT (excegase they are occluded): comparison among standard
strategies and the non-myopic information theoretic styatath occlusion handling with different horizoris y = 0.9,
B =04,M = 100.
Strategy “fix’ ‘patrol’ | ‘rnd’ | A=1 | h=2 | h=3
MOTA 80.6% | 50.7% | 30.6% | 79.7% | 82.1% | 76.1 %
(MOTP [m]) | (0.20) | (0.40) | (0.39) | (0.16) | (0.17) | (0.18)
Height [pix] | 199 | 385 | 293 | 349 | 350 | 361

# Dets 2160 414 567 1631 | 1542 | 1536
Zoom [X] 1.00 2.00 1.55 1.79 1.79 1.86

Table 10: PETS dataset, HOG detector: comparison among stbstdategies and the non-myopic information theoretic
strategy with occlusion handling with different horizansy = 0.9,8 = 0.4, M = 100.

Strategy fix’ ‘patrol’ | ‘rnd” | h=1 | h=2 | h=3

MOTA 21.6% | 19.0% | -3.6% | 60.5% | 64.1% | 70.5%
MOTP [m] | (0.35) | (0.52) | (0.51)| (0.30) | (0.34) | (0.33)
Height [pix] | 19.5 37.7 285 | 379 | 34.9 389

#Dets | 1886 | 370 | 581 | 1292 | 1353 | 1231
Zoom[x] | 1.00 | 2.00 | 1.48 | 2.00 | 1.79 | 2.01

abruptly changes directions, when close to the boundafitedimited area, the EKF engine is
not able to predict far in future the probability density tbe target’s position. Thus, an action
selected relying on such prediction could not be the best.

10.2. Realistic Experiments on the S2-L1-Viewl PETS Segquenthe Non-Myopic Strategy

In Tab[9 we report the results on the PETS sequence usingdbadjtruth as detector. As it
can be seen the non-myopic approach obtain slightly bettréomance than the myopic version
in terms of accuracy (MOTA). The best horizonfis= 2 since we obtain the highest MOTA
value and an high accuracy in the localization. In this fiettisg the detector is not affected
by the target size: all the non occluded targets, even atlearyesolution (less than 20 pixels)
are correctly detected. For this reason the ‘fix’ strategy the second best MOTA. Anyway,
the zooming capability of the camera helps in the localaratiln fact, the MOTP is lower for
h = 1,2,3 and results in a higher average size of targets on the inlage B61 pixels fori = 3
while the ‘fix’ strategy obtain 19 pixels.

In the second test, we introduce a real implementation oHO& detector, enriching the
realism of the simulation. Since we noticed that the HOG aetewas performing quite well
on this dataset, better than the expected performanceddigie did not put the detection term
in the estimationi{q = +c0,rg = +00). The results are in Tab. 110. Even in this case, the non-
myopic approach does considerable better than the myopsowe as witnessed by the MOTA
score. In this case, the best horizorhis: 3 since the dynamics of the targets is simpler, with
less changes in directions. Therefore, our model (and the @kamics) can predict the future
target trajectories with more reliability.
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11. Conclusions

In this paper, we propose a novel solution to perform sensoragement of a single PTZ
camera for multiple target tracking. Such solution considiee detector performance at different
image resolutions and occlusion ratios. Moreover, it aders the effects of a different camera
pose to targets localization. To further improve the traghierformance we apply a non-myopic
approach which considers future occlusions among targeselecting the next actions. We
analyze the characteristics and demonstrate the effaethgeof our approach through, synthetic
experiments, realistic simulations and effective remletitrials on a real PTZ camera.

Appendix A. Measurement Accuracy while Zooming

Assuming a constant image measurement error and perfémtatedn, world coordinate lo-
calization is much more accurate if the backprojection isqumed using zoomed views (i.e.
long focal length).

We derive analytically the expression that allows to apipteciow zoom affects the measure-
ment equation in the recursive filtering formulation. Meaa&snent uncertainty is mainly oriented
along the direction of instantaneous depth because of th@pgcamera capability. According
to this, uncertainty can be quantified assuming a 1D prejedamera parametrized by the tilt
angled in the instantaneous plane rotating around the verticabcamaxis and focal length.

Without loss of generality let’s consider that the prin¢ipaint lies at the image center:

o Al
_[0 1}' A

We further have:

cos(d) -sin(h)
= . (A.2)
sin(d) cos(b)
The 1-D camera projection matrix= K[R|t] results in:
fcos(@ —fsin@ O
P= . , (A.3)
sin(0) cos(®) —d

wheret = [0 — d] " andd is the camera distance with respect to the scene plane. Bersgene
planeZ = 0, the 1D homography from world to image can be computed fron{&3J):

fcos(@ O
= ) . (A.4)
sin(@) -d
The inverse:

fcés(e) 0

-1 _

H _[ sine)_ _ 41 } (A-5)
f cog6)d

can be used to compute the back-projected uncertainty eka gioise uncertaintyassumed in
the camera image sensor and compute its backprojegtidiithout loss of generality and for
the sake of simplicity, let's define:

0 €
X1=[ }, XZZ[ }, (A6)



their corresponding backprojected points:

0
r _ 111 _
Xp=H X1 = [ gt ] (A.7)
P fcgs(e)
X, =H"% s _ g1 |° (A.8)
f cog6)d
are used to compute:
d
§=x,—X%; < (A.9)

= sin(@) e fcos(d)

Givene, 6 andd, the value of can be increased by increasing the focal length (i.e. paifay
zoom-in).
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