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Abstract

Automatic multiple object tracking with a single pan-tilt-zoom (PTZ) cameras is a hard task,
with few approaches in the literature, most of them proposing simplistic scenarios. In this paper,
we present a novel PTZ camera management framework in which at each time step, the next
camera pose (pan, tilt, focal length) is chosen to support multiple object tracking. The policy can
be myopic or non-myopic, where the former analyzes exclusively the current frame for deciding
the next camera pose, while the latter takes into account plausible future target displacements and
camera poses, through a multiple look-ahead optimization.In both cases, occlusions, a variable
number of subjects and genuine pedestrian detectors are taken into account, for the first time in
the literature. Convincing comparative results on synthetic data, realistic simulations and real
trials validate our proposal, showing that non-myopic strategies are particularly suited for a PTZ
camera management.

Keywords: Pan-Tilt-Zoom Camera, Multiple Object Tracking, Sensor Management, Markov
Decision Process

1. Introduction

Visual Tracking of multiple objects in realistic outdoor scenarios is often performed in wide
areas. In these viewing conditions a stationary fixed focal length camera has typically too limited
field of view and image resolution with respect to the scene extent. Therefore, a network of cam-
eras is used to sufficiently cover the area at the required resolution [1, 2, 3, 4, 5]. However, this
may be unfeasible for the cost associated to the setup and maintenance of the camera network, as
well as for the practical impossibility to provide all the necessary resolutions for target biometric
recognition at a distance. Similarly, in the case of a vehicle mounted camera [6, 7, 8, 9] it would
be difficult to cover a wide area at adequate resolution due tothe limited acceleration at which
the camera may be moved. Active Vision [10] and specifically Active Pan Tilt Zoom (PTZ) cam-
eras, have promised to solve these limitations, permittingat least in principle the monitoring of
a large space at variable image resolutions [11, 4]. However, letting a large number of stationary
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or PTZ cameras operate in a cooperative way is still an expensive and complex solution [12, 13];
for this reason, exploiting a single zooming sensor could bea more reasonable and worthy goal.
According to this, in this paper, we propose and show the benefits of an active sensing approach
to multiple object detection and tracking using a single pantilt zoom camera.

Despite the high exploitable potential, when applied for the task of multiple object tracking
in world coordinates, a single PTZ camera induces a number ofcomplex problems that must be
solved to obtain effective results [14, 15]. Specifically, camera calibration solutions adopting
natural landmarks [16, 17] should be preferred with respectto others adopting domain specific
scene landmark geometry as in [11, 15, 18]. Since the PTZ camera must also undergo rapid and
unpredictable motions to rapidly gaze at any part of the fieldof view, real time tracking of cam-
era motion should not be based on recursive filtering, but on keyframe based methods [16, 19].
At the same time, the scene background appearance must be continuously updated [16, 20, 21].
Moreover, due to the fact that monitoring is performed in a large area, accurate objects localiza-
tion in a common 3D world reference frame is needed to track targets at a distance. This requires
some form of online camera calibration since the camera parameters change dynamically. The
framework we developed in [22] is conceived to support all these requirements and is therefore
suitable to be used in task-driven active surveillance of scenes with multiple moving objects.

Starting from this framework [22], we propose a solution forsensor management (i.e. de-
termine the best way to control the visual sensor) in order toenhance multiple target detection
and tracking in a wide area. Here the focus is on non-myopic sensor management where the
long-term ramifications of taking a particularsensing actionare accounted for decision making.
A sensing action may consist of choosing a particular image processing modality (e.g. pedestrian
detection or motion detection), a particular camera pose and focal length, or a combination of
the two. Information gain [23] is chosen as performance indicator of decision making, since it
has the desirable property that different inhomogeneous sensing actions can be simultaneously
optimized in a single metric. This requires to maintain the probability density which capture un-
certainty in the current state estimate. In our setting there are multiple actions that can be tasked
by evaluating a single global metric, some of which contribute better than others to tracking.
The PTZ camera sensor is used to gain information about the kinematic state (e.g. position and
velocity) and objects detectability2. There are many objectives that the sensor manager may be
tuned to meet, e.g. minimization of track loss, probabilityof target detection, minimization of
track error/covariance, and identification accuracy. Eachof these different objectives taken alone
may lead to a different sensor allocation strategy. As detailed in Sec. 4, we jointly optimize over
all these objectives by maximizing the expected amount of information extracted from the scene,
namely the expected information gain between the current objects state estimate and the state
estimate after a measurement has been made. Since the best sensing action must be selected
before actually executing it, what is practically maximized is the expected reduction in entropy
(i.e. the expected information gain) that a sensing action will produce. Fig. 1 shows the three
main components of the complete multi target tracking system for a single PTZ camera.

The sensor management problem can be approached in a principled way with the Marko-
vian Decision Process (MDP) formalism [24]. However, the long-term (non-myopic) planning
solution suffers from combinatorial explosion and may be defined, as in our case, in a continu-
ous state space. Approximate solutions are therefore required and will be discussed in the next

2 Image object measurements are obtained according to a detectorthat have a time-varying object response char-
acteristics. For example in the case of pedestrian detectionas processing modality, the response characteristic varies
depending on the imaged size of the object and on how much the object is occluded.
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Figure 1: The three main components of the system.

section. This work extends the preliminary results we obtained in [25] where we have analyzed
the myopic (i.e. greedy) aspects of sensor management. Experimental results show that the
non-myopic strategy provides a substantial performance improvement by better capturing the
complex space-time trade-off between objects and camera motion. Two motivating examples for
which the non-myopic will outperform the myopic strategy are: 1) the case in which an object is
repeatedly measured before it gets occluded so as to sharpenits uncertainty when it reappears;
2) the case in which objects are measured exploiting the calibrated zoom3 so as to sharpen their
uncertainties. The underlying assumption is that if the operative scenario evolves with reason-
able temporal coherence, it is possible to predict the ability of gathering information of a future
action.

Synthetic and real experiments are shown confirming the suitability of our approach for real-
istic scenarios. Fig. 2 shows few frames from the three sets of experiments.

The rest of the paper is organized as follows. We give and overview of related work in
Sec. 2 while we summarize our contributions in Sec. 3. The information theoretic formulation
based on MDP for the myopic version is presented in Sec. 4, andthe modeling of the real world
challenges such as missed detections and occlusions is presented in Sec. 5. The non-myopic
version is described in Sec. 6. In Sec. 7 we give a detailed discussion about how the proposed
solution can be extended to a network of multiple cameras. Some implementation and evaluation
details are given in Sec. 8. Experiments for the myopic framework are reported in Sec. 9 while
experiments for the non-myopic version are reported in Sec.10. Finally the conclusions are
drawn in Sec. 11.

2. Related work

Automatic multiple object tracking with a single pan-tilt-zoom camera is a hard task with
few approaches present in the literature, most of which propose simplified scenarios. One of

3Calibrated zoom allows increasing measurement accuracy in world plane coordinate object localization. In the
Appendix a formal proof of this result is presented.
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Figure 2: (a) Synthetic scenario; (b) realistic simulation;(c-f) real trial (best viewed in colors).

the most challenging part is that the evaluation with real data require the development of a real
time system since it is not possible to work offline with pre-recorded4 videos. To deal with
this issue, in [26] a completely simulated environment is created through computer graphics
and different strategies for camera to target assignments are proposed and compared. In [27]
the authors propose a system for cooperative tracking between multiple Active Vision Agents
(AVA). In this solution each AVA agent manages visual perception, camera action and network
communication to perform cooperative tracking. Differentscheduling policies for a network of
PTZ cameras in a master-slave configuration were tested in [28, 29]. However, the strategies
described above [26, 27, 28, 29] are mainly hand-crafted, and require precise information on the
targets’ position from other sensors. An overview of recentmethods for managing PTZ camera
networks can be found in [30, 31].

Principled information theoretic frameworks exploiting the concept of information gain for
single object tracking are introduced in [32, 33, 34]. In [32] optimal selection of the focal lengths
of two cameras during active 3D object tracking is proposed.This is the first work on active focal
length selection for improving accuracy in 3D object tracking. Despite the promising results
observed in a controlled laboratory test, the system is not yet mature to work in unconstrained
video sequences. In [33], the authors propose a non-myopic solution for optimal focal length
selection based on the minimization of the expected entropyof a tracked object. Tracking is
performed in 2D, only on simulated data, using an extended Kalman filter. In [34] the authors
suggests a method to control the zoom in order to obtain maximum resolution by placing a limit
in the innovation of a constant velocity Kalman filter. In particular, the zoom is used to modify

4If the video is recorded at high resolution it is possible to crop and downsample the image to get the desired field of
view. However the level of detail and the quality of the image that can be captured with optical zoom is still orders of
magnitude larger than the one achievable with the digital zoom.
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Table 1: Overview of the main characteristics for state of theart methods and our solution.

Method Sync. Calibration # Tested Cameras Multi target Occlusions Optimized cost
[12] Yes Yes (offline) 4 fixed and 4 PTZ Yes, in the fixed

cameras
Yes, in the fixed
cameras

Highest target resolution

[13] Yes Yes (offline) 9 PTZ Yes No Tracking accuracy and high-
est target resolution

[35, 36, 37] No Yes (online) 1 PTZ No No Costant object imaged size
[38] No No 1 PTZ Yes No Tracking accuracy
[39] Yes Yes (offline) 2 PTZ Yes No Tracking accuracy and high-

est target resolution
[40] Yes Yes (offline) 2 PTZ Yes Yes Tracking accuracy
Ours No Yes (online) 1 PTZ Yes Yes Tracking accuracy

the measurement process. Other works that control the focallength to keep the imaged size of a
single object constant were proposed in [35, 36, 37], but no 3D localization uncertainty is taken
into account and the extension to multiple objects is not trivial.

Sensor management for the task of multiple object tracking is addressed in [38]. Here track-
ing is performed in the image plane and therefore focal length selection cannot be used to improve
the accuracy in 3D object localization. Multiple zooming cameras which give a 3D representa-
tion of target positions are considered in [39] for the multi-target scenario. In both [38] and [39]
the evaluation is carried out with ground truth data (i.e. sources of error from the detection,
tracking and and data association stage are ignored). All the works described above optimize
over a single step look-ahead (i.e. myopic) except for the method in [33] which optimize over
multiple step ahead for the task of tracking a single moving object. However testing is conducted
with single object in a constrained simulated environment and only the zoom is managed.

Recently novel sensor management approaches with real-time implementations has been re-
ported in [12] and [13] with convincing results. The networkcamera system described in [12]
comprises a total of eight cameras, four fixed and four PTZ. The fixed cameras are processed at
a resolution of 320× 240 while no image processing is performed on the PTZ views. The sensor
network in [13] includes nine PTZ network IP cameras with a resolution of 320× 240 pixels and
12× optical zoom. In this system the control of the PTZ parameters is modeled as a multiplayer
game where the cameras gain by reducing the error covarianceof the tracked targets or through
higher resolution feature acquisition, which, however, comes at the risk of losing the target. The
work in [40] proposes a distributed approach to optimize various scene analysis performance
criteria through distributed control of a dynamic camera network including the uncertainty of the
targets. All these works adopt a large number of stationary or PTZ cameras operating in a coor-
dinated way (typically in master-slave configuration [41, 42]). Although these approaches could
be in principle applied to the case of a single camera we are not aware of any work investigating
in this regard.

In Tab. 1 we give an overview of the main characteristics for some of the methods described
above and our solution. In particular, we highlight the maindifferences in terms of: necessity of
synchronization between the sensors involved in the network, calibration of each sensor, number
of cameras, number of tracked targets, occlusions management and the cost to be optimized.
In particular, the cost to be optimized can be: the accuracy in tracking the targets (Tracking
accuracy), the necessity to maintain constant the size at which the object is observed (Costant
object imaged size) or the necessity to obtain the highest resolution for the object of interest
(Highest target resolution).
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Computational Model.The sensor management problem is generally approached as planning
under uncertainty according to Markov Decision Processes (MDPs) [24]. Such framework ex-
plicitly models the temporal state evolution and designs a policy for selecting the action based on
a reward function. However, optimal long-term solutions suffer from combinatorial explosion,
for this reason suboptimal approximate methods must be applied.

The non-myopic strategy can be optimized with a Monte Carlo rollout strategy as described
in [43, 44]. These approaches address the solution for largeMDPs while small problems can
be directly solved with Dynamic Programming [45]. There aretwo basic variants for estimating
(online) an approximate strategy of a MDP and both these variants can be classified based on
the length of the planning horizon, namely: Monte Carlo TreeSearch methods (MCTS) [46]
and Reinforcement Learning (RL) based methods [47]. The former guide the search using re-
sults from rollouts in the decision tree of the actions and are appropriate for the finite horizon
case. The latter are most indicated for finding approximate solutions in the infinity horizon case.
The method that we investigate here is focused on finite horizon and includes sparse sampling
techniques for direct approximation of the Bellman equation, as described in [48]. A relevant
application of this technique has been recently presented in [49] for the task of tracking vehicles
from radar imagery. The rollout approach driven by information metric is exploited to capture
the long-term reward due to expected visibility and occlusion of objects.

Another application of MDP, hidden MDP (hMDP), is proposed in [50], where a target mov-
ing in the scene is modeled as an agent for which the state is the position on the plane and the
action is its future direction. In this work the goal is to estimate the policy it is following in order
to forecast its future behavior.

3. Contributions

Our contributions with respect to the related work are:

• A well-founded theoretical solution for the information theoretic management of an active
camera, which keeps into account all the typical sources of error of a tracking system:
detector performance, limited field of view, occlusions among targets, variable number of
targets. The solution has been divided in two techniques: one myopic, introduced in[25]
and here fully detailed in all the mathematical derivations; the other technique is a non-
myopic minimization strategy that can more effectively deal with a high number of targets,
occlusions among them and the mechanical constraints of thecamera.

• We adopt the sampling method in [48] to handle large Partially Observable MDP (POMDP)
and modify it to further limit the computational cost.

• We improve the evaluation of the whole method with respect to previous works [38]
and [39] in which ground truth data are used as objects measurements, and use standard
metrics for multi-target tracking evaluation.

• We firstly show how to task a single PTZ camera according to a sophisticated sensor man-
agement strategy to support multiple object tracking in a 3Dworld coordinate frame [22],
and demonstrate it working online in a real scenario.
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4. MDP with Information Gain Reward

4.1. Baseline method for multi object tracking

Similarly to [22] and [38], our baseline multi object tracking uses Extended Kalman filter (EKF)
for each initialized target. Pedestrian detection [51] is used to extract object observations, and
the Hungarian algorithm [52] is applied to associate each observation to the corresponding EKF-
filter and to initialize a new filter in the case of unassociated observations.
At time t, the real object state,st, and its estimation,xt, include its location in world coordinates
and its speed:st = [xw

s,t, y
w
s,t, ẋ

w
s,t, ẏ

w
s,t]
⊤, xt = [xw

t , y
w
t , ẋ

w
t , ẏ

w
t ]⊤. The observationot = [ut, vt]⊤, i.e.,

the target location on the image plane, only depends on the current state and on the actionat,
that is selected from the finite setA which comprisesL different possible actions each of which
corresponds to a particular PTZ camera posea= (φ, θ, f) ∈ A (the panφ, tilt θ and focal length f
respectively). Formally, we have:

st = f (st−1) +mt, mt ∼ N(0,U),

ot = g(st, at) + nt, nt ∼ N(0,V),
(1)

where f (·) andg(·) are the motion model and the observation model, respectively, mt andnt are
the process and the measurement noise withU andV their respective covariance matrices. In
particular, the functiong(·) represents the homography from the world plane to the imageplane
parameterized by the actions defined in the setat.
Let x−t be the predicted state estimate at timet, i.e. before having made the observation att, while
x+t incorporates the observation. The final estimate for the state at timet, xt, is eitherx+t or x−t ,
depending whether the target is observed or not (e.g., when the camera is not pointing at it, or
the detector misses it).P−t ,P+t andPt are the covariance matrices forx−t ,x+t andxt, respectively.
If the target is not observed, onlyx−t andP−t are considered. The EKF equations are then:

x−t = Fxt−1,

P−t = F⊤Pt−1F + U,

Kt = P−t Cx(at)(C⊤x (at)P−t Cx(at) + V)−1,

x+t = x−t +Kt(ot − g(x−t , at)),

P+t = (I −KtC⊤x (at))P−t ,

(2)

whereCx(at) = ∇xg(x, at)|x=x−t is the linearized homographyg evaluated inx−t andF is the 4×4
matrix that models the system dynamics. Importantly,Cx(at) depends on the action, so that
diverse camera poses lead to different observation matrices, and different estimations forx+t and
P+t . It is worth to highlight that also the zoom modifies the linearized projection matrixCx(at); in
fact observing a target with an higher magnification will produce a smaller covarianceP+t [32].

Eqs. 2 can be seen as modeling the transition probabilities in the MDP (see Fig. 3). To
complete the MDP model, we need the reward functionR(x−t , at), which tells how informative is
a given actionat performed in the statex−t . Notably, the reward must depend onx−t (not onx+t ),
since we want to select the actionbeforeperforming the observation. Given the reward function,
at each time step we can evaluate its value for all the possible actionsat ∈ A, choosing the one
which gives the maximal reward.
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Figure 3: Graphical representation of our approach.

4.2. Information gain formulation

In designing the reward functionR(x−t , at) we directly relate it to the expected information
gain I (xt; ot |at) between the statext and the observationot, for a given action. In practice, it
expresses the amount of information shared between state and observation. Adopting the same
formulation of [53], we can write:

a⋆t = arg max
at

R(x−t ; at) = arg max
at

I (xt; ot |at) =

= arg max
at

H(x−t ) − H(xt |ot, at) = arg min
at

H(xt |ot, at),
(3)

whereH(xt |ot, at) is the conditional entropy5. Thus, we want to minimize:

H(xt |ot, at) = (4)

=−

∫

p(ot |at)
∫

p(xt |ot, at) log(p(xt |ot, at))dxtdot=

=

∫

Ωt

p(ot |at)dotH(x+t ) +
∫

¬Ωt

p(ot |at)dotH(x−t )=

= αt(at)H(x+t ) + (1− αt(at))H(x−t ),

where we split the domain of integration forp(ot |at). Ωt is the set of points in which the target is
visible,¬Ωt is the set where it is not visible, i.e., it is out of the camerafield of view (FoV), is
occluded, or is too small to be detected. Assuming the distribution forxt as Gaussian and being
the system in Eqs. 2 linear, we can derive the entropyH(x+t ) directly from the EKF equations. In
fact, the entropy of a Gaussian distribution only depends onits covariance6 and Eqs. 2 provide
P+t if at allows to get the observation for the target, andP−t otherwise. For more details, see [53].

5The conditional entropy for two random variablesx andy is defined asH(x|y) = −
∫ ∫

p(x, y) log p(x|y)dxdy.
6The entropy of a Gaussian distributed random vectorx ∈ Rn with x ∼ N(µ,Σ) is: H(x) = n

2 +
1
2 log((2π)n‖Σ‖).
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In other words, to ensure maximal expected information gainI (xt; ot |at) we need only to
consider how the termα(at) varies for different actionsat. Intuitively, such term estimates the
probability that at the next step a target will be observed bythe camera, as a function of the pose
of the camera itself. Extending toK independent targets correspond to sum up the information
gainsIk for each targetk.

5. Modeling real world scenarios

As analyzed in the previous section, the formulation ofα(at) in [53] is limited, since it ne-
glects aspects of real world scenarios. We model (a) the visibility constraint, accounting for the
physical dimension of the target in the current field of view;(b) a realistic person detector whose
performance varies according to the occlusion ratio and theimaged object size; (c) the occlusions
between the targets that considers the relative positions between the imaged objects (evaluated
through sampling); and (d) the mechanical speed limits of camera motion. The variability of the
number of targets is managed through the patrolling term as in [38].

5.1. Modeling visibility and detection factors
Introducing the visibility constraint requires to define properly the setΩt in Eq. 4, while

introducing the estimation of the detector performance implies to modify p(ot |at). Let dt be a
binary variable which is 1 if the target is found by the detector and 0 otherwise. In practice,dt

tells us whether the Kalman filter will be updated with a new observation or only the information
from the previous prediction will be considered. Hence, Eq.4 can be modified by considering
this new variable:

H(xt |ot,dt, at) = −
∫ ∫

p(ot,dt |at)
∫

p(xt |ot,dt, at) log(p(xt |ot,dt, at))dxtdotddt.

(5)

Let us start by analyzingp(ot,dt |at) and introducing some assumptions. First,p(ot |at) = p(o−t |at)
(whereo−t = g(x−t , at) ) since the actual observationot is yet not available when selecting the
actual actionat

7. In this way, we assume that the expected positions of the targets on the image
plane only depend on the prediction of the state and the action. Second, we assume that the
visibility of a target only depends on its position on the image plane, being unaware of obstacles
or other occluders in the scene. Therefore, the termp(ot,dt |at) in Eq. 5 factorizes as:

p(ot,dt |at) = p(ot |at)p(dt |ot, at). (6)

Beingdt binary, Eq. 5 may be rearranged as:

H(xt |ot,dt, at) =
∫

¬Ωt

p(ot |at)dotH(x−t )+

+

∫

Ωt

p(ot |at)p(dt=0|ot, at)dotH(x−t )+

+

∫

Ωt

p(ot |at)p(dt=1|ot, at)dotH(x+t ) =

=(1− α(at))H(x−t ) + α(at)H(x+t ),

(7)

7In the remaining, for the sake of clarity, we omit the apex− from o−t , if not otherwise specified.
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Table 2: Comparing the miss rate as a function of target size between HOG pedestrian detector and the parametric
estimation proposed in this paper. See Fig. 4 for the corresponding plots.

target height [pixel] 32 45 64 91 128
HOG (dashed orange) 0.928 0.8272 0.696 0.473 0.350

estimation (solid black ) 0.900 0.792 0.657 0.503 0.350

where we also suppose that a detection is possible only if theobservation is visible in the image.
In conclusion, we just need to compute for any possible action at the weightα(at):

α(at) =
∫

Ωt

p(ot |at)p(dt=1|ot, at)dot. (8)

Now, to preserve the Gaussian distribution and therefore the efficient integration for the weight
α(at), the two pdfs in Eq. 8 and the integration domainΩ are defined as follows.

Observation Distribution. p(ot |at) is the predicted distribution of the observation. Based onthe
prediction of the state from Eqs. 2, we haveot ∼ N(o−t ,Σot ), where:

o−t = Cx(at)x−t , Σot = Cx(at)P
−C⊤x (at) + V. (9)

Visibility Probability. Ωt is the set of possible observations{ot} for which the target is fully
visible in the camera field of view, considering the limited size of the image planeS ⊂ R

2. In
defining such set, we originally extend the work in [39], and consider the spatial dimension of
the targets, assuming that objects are almost vertical on the ground plane and that their projected
height is known for at least one target. Since we know the extrinsic calibration parameter for the
camera, we can estimate the head positionet(ot) on the image plane for a target whose feet are
in ot, through the homologyWat , as in [54]. The setΩt is then defined as:

ot ∈ Ωt ⇔ ot ∈ S ∧ et(ot) ∈ S. (10)

To integratep(ot |at) on the set of points defined above we linearize the homology through the
JacobianJat = ∇otWat |ot=o−t of Wat aroundo−t . Therefore:

et ≈ ēt + Jat (ot − o−t ), ēt = Wat(o
−
t ). (11)

Assuming that people are vertical in the scene, and that the image planey-axis is vertical, we can
discard the horizontal component getting:

ye
t = yē

t + Jat2,2
(yo

t − yo−
t ), xe

t = xo
t . (12)

In conclusion, they coordinate for the headet is linearly obtained from they coordinate ofot,
thus the integration on the image plane is still equivalent to integrating over a rectangle whose
sides are parallel to thex-y axis.

Detection probability. p(dt=1|ot, at) is the probability that a target will actually be detected given
its position in the image plane. In practice, we consider that the performance of any pedestrian
detectors depends on the heightrt of the target on the image plane (in pixels). We estimate such
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OpenCV. The plot shows that the dependency of the pedestriandetector performance, as a function of the occluded area,
can be approximated as linear.

a relation with the functionp(dt = 1) = 1− e−Kd(r−r0)1(r − r0). The two parametersKd = 0.0098
andr0 = 21.29 are extrapolated from the performance of HOG pedestrian detector on the Caltech
Pedestrian Dataset, reported in [55]8. More details are given in Tab. 2 where we report the miss
rate values as a function of target size for the HOG pedestrian detector and compare them with
the parametric estimation used. Fig. 4 (left) shows the miss rate values for all the other methods
reported in [55].

The target heightrt = |ye
t − yo

t | = (yo
t − ye

t ) can be computed as a function of the observation
yo

t and the camera positionat, exploiting the homology:

rt =
[

0 1
] [

ot − et

]

=

[

0 1
]

[

(I2×2 − Jat )ot − Wat (o
−
t ) − Jat o

−
t
]

=

=

[

0 1
]

[Ttot] +
[

0 1
]

[

−Wat (o
−
t ) − Jat o

−
t
]

= Ttot + tt.
(13)

Linearizing the homology around the expected observationo−t give us the exponential function:

p(dt=1|ot, at) = 1− e−Kd(Ttot+tt−r0), (14)

where the matrixTt andtt are constants depending on the linearized homology, see Eq.12. The
product of the Gaussian distributionp(ot |at), Eq. 9, and the exponential function inot, Eq. 14,
gives another Gaussian distribution:

8Since in our implementations we use the HOG pedestrian detector, we estimate the parametersKd andr0 for the
performance of that detector. The same procedure can be applied to any other detector for which the miss-rate as a
function of the target size is given.
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p(ot |at)p(dt = 1|ot, at) =

=
1

2π|Σ|
1
2

(

1− exp(tt − r0) exp(−KdTtot)
)

exp

(

−
1
2

(ot − µ)
⊤
Σ
−1(ot − µ)

)

=

=
1

2π|Σ|
1
2

(

exp−
1
2

(ot − µ)
⊤
Σ
−1(ot − µ) +

− exp(tt − r0) exp−
1
2

(o⊤t Σ
−1
ΣTtKd + T

⊤
t ΣΣ

−1otKd + (ot − µ)
⊤
Σ
−1(ot − µ))

)

=

=
1

2π|Σ|
1
2

exp

(

−
1
2

(ot − µ)
⊤
Σ
−1(ot − µ)

)

+

−
1

2π|Σ|
1
2

exp













tt − r0 +
K2

d

2
T
⊤
t ΣTt













exp

(

−
1
2

((ot − (µ − ΣTtKd))⊤Σ−1(ot − (µ − ΣTtKd))

)

.

(15)

Thus the weightα(at) in Eq. 8 can be numerically computed as bounded integrationof a Gaussian
distribution, and the boundary are modified to require that the minimum target height isr0.
At this point we have introduced two factors that increase the realism and completeness of the
proposed model, while maintaining a low computational costfor the reward function. In the next
sections the management of occlusions among targets will beintroduced to further reduce the
difference between the expected information gain and the real information gain obtained from
the camera.

5.2. Occlusions Handling
Occlusions represent a serious problem for the selection ofthe action due to a wrong esti-

mation of the information gain for a target. In fact, being occlusions not modeled in the above
formulation, even an occluded target would bring a contribution to the expected information
gain, which will not correspond to real information gain obtained after the action is performed.
As analyzed in [55] the larger the occluded area for a target the more probable that the detection
algorithm will fail. Without any information on possible occluding obstacles in the field of view,
we can only keep into account inter-occlusions among targets. To this aim, we introduce a term
that estimates the ratio of area of a person occluded in the frame, resembling the depth-sorting
method of [56]. In practice, we build a binary occlusion maskwhich indicates the occluded pix-
els for each target. From now on we slightly modify the notation, introducing an index for each
targetk ∈ K (with |K| = K), since we will have to consider also the dependencies amongtwo or
more targets.
Formally, letck

t ∈ [0,1] be the ratio of the bounding box of the target which is visible at timet,
we can estimate the relation between the probability of detecting the target and its associatedct

by injecting this variable in Eq. 5:

H(xk
t |o

k
t ,d

k
t , c

k
t , at) =

∫

¬Ωt

p(ok
t |at)dotH(x−,kt )+

+

∫

Ωt

p(ok
t |at)

∫

p(dk
t=0|o

k
t , at, ck

t )p(ck
t |o

k
t , at)dck

t dok
t H(x−t )+

+

∫

Ωt

p(ok
t |at)

∫

p(dk
t=1|o

k
t , at, ck

t )p(ck
t |o

k
t , at)dck

t dok
t H(x+t ) =

= (1− α(at))H(x−,kt ) + α(at)H(x+,kt ).

(16)
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As for the previous case, we just need to compute for any possible actionat a modified version
of the weightα(at):

αk(at)=
∫

Ωt

p(ok
t |at)

∫

p(dk
t=1|c

k
t , o

k
t , at)p(ck

t |o
k
t , at)dck

t dok
t , (17)

which requires to definep(dk
t=1|c

k
t , o

k
t , at) andp(ck

t |o
k
t , at).

Detection Probability with Occlusion Term.We assume that the effect of the occlusion ratio
and the target size on the detection performance are independent. This leads to the following
factorization:p(dk

t |c
k
t , o

k
t , at) = p(dk

t |o
k
t , at)p(dk

t |c
k
t ), where the first factor has been computed in

Sec. 5.1. To estimatep(dk
t |c

k
t ), i.e., the effect of the occlusion on the detection performance, we

use again the Caltech Pedestrian Dataset [55], obtaining the plots shown in Fig. 4(right). We
choose to approximate this relation as linear:p(dk

t=1|c
k
t ) = ck

t .

Computing Occlusion Ratio for each Target. p(ck
t |o

k
t , at) estimates the distribution of the occlu-

sion ratio, given the observation for the targetk and the camera position. This term also depends
on the position of the other targets in the scene (collectively indexed by¬k), so we need to expand
it as:

p(ck
t |o

k
t , at) =

∫

p(ck
t |o
K
t , at)p(oKt |at)do¬k. (18)

The termp(ck
t |o
K , at) expresses the visibility probability given by the ratio ofvisible versus

occluded pixels:

p(ck
t |o
K , at) = δ(ck

t − c̄k), c̄k
t =

∫

δ(xk
t <u

x¬k
t |at)du

∫

δ(xk
t |at)du

, (19)

whereδ(xk
t <u

x¬k
t |at) is a binary mask that takes value 1 if at pixelu a part of targetk is observed,

and 0 otherwise. The other term
∫

δ(xk
t |at) measures the whole target area.

The main limitation of this formulation is that it is not possible anymore to compute the infor-
mation gain for each target independently, since the relative position among targets is considered
when estimating occlusion, and it is also not possible to compute thep(ck

t ) in closed form.
Therefore, at each possible camera pose we apply a Monte Carlo approach sampling from

p(x−,1t , . . . , x
−,k
t , . . . , x

−,K
t ) =

∏K
k=1 p(x−,kt ), M sets of positions

{

x̃−,1t, j , . . . , x̃
−,k
t, j , . . . , x̃

−,K
t, j

}

j=1...M
for

all the targets. Then, for a candidate actionat, the corresponding weightαk(at) is estimated from
the related sets of observation predictions,

{

õ1
t, j , . . . , õ

k
t, j , . . . , õ

K
t, j

}

j=1...M
, computed according to

the model of Eq. 2. Each of this setj is used to evaluate the inner integral in Eq. 17:

d̃k
t, j =

∫

p(dk
t=1|c

k
t , õ

k
t, j , at)p(ck

t |õ
k
t, j , at)dck

t , (20)

providing the detection probability of the targetk in the samplej. The finalαk(at) for the target
k is therefore computed replacing the integral in Eq. 17 with asummation over the samples:

αk(at) =
1
M

M
∑

j=1

d̃k
t, j . (21)

The conditional entropy for that target is then computed according to Eq. 7. The sum of the
contribution of each target provides the information gain for all the targets.
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5 7 16

Figure 5: The comparison between the expected information gain for the most promising action,I (xt , o−t |a
⋆
t ), used as

reward function, Eq. 3, and the actual information gain that is obtained with the observation from the selected action
I (xt , ot |a⋆t ). This test is performed on the synthetic experiments, see Sec. 9, varying the complexity of the reward
function. a) comparison between the expected and realized information gain using the reward function that only keeps
into account the visibility criterion, Eq. 5;b) same as before but obtained by keeping into account the performance from
the detector, Eq. 7;c) keeps into account also the occlusions among particles, Eq. 16, with M = 100. d) shows the
differences for the 3 case on a statistic of 12 runs of 50 frameseach. Note that the difference decreases as the model
becomes more accurate and is close to 0 for the last formulation of case c).
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Figure 6: Graph of the algorithm for computing the expected information gain with the occlusions estimation, Eq. 16.
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5.3. Modeling the camera mechanics: action set reduction

We want to model the mechanical constraints that define the set of positions reachable from
the current pose, in a given time interval, of a real PTZ camera. Given the set of all the possible
camera actionsA and the previous actionat−1 = (φt−1, θt−1, ft−1), an action (φ, θ, f) ∈ A also
belongs to the set of actionsAt, reachable at the next timet, if:

|φ − φt−1| ≤ ∆φ ∧ |θ − θt−1| ≤ ∆θ ∧ |f − ft−1| ≤ ∆f , (22)

where∆φ and∆θ are the maximum displacement allowed in the unit of time for the pan and tilt
angles and∆f is the maximum variation in the zoom, that can be easily obtained by combining
the expected system frame rate and the camera specifications.

5.4. Patrolling term for new target detection

To take into account for new targets occurring in the scene, the PTZ has to randomly patrol,
looking for new evidence. To model this factor we get inspiration from [38], where an additional
term Ip(bt |at) related to the patrolling around the scene is defined. Such factor estimates the
information gain that could be obtained performing an action at due to the detection of a new
targetbt.

When combining the information gain on target position uncertainty with the patrolling term
we obtain:

It(at) =
N

∑

k

I (xk
t ; ok

t |at) + βIp(bt |at), (23)

whereβ is the weight that mixes the two quantities.
With this last element we complete the definition of the MDP process formed by the EKF

equations plus the reward function. In particular, Eq. 8 andEq. 17 characterize the two proposed
versions, the first more efficient and the second one more complex, which also takes into account
the occlusions. Alg. 1 shows the pseudo-code for the versionwith the occlusions handling.

Algorithm 1: Algorithm for the myopic approach
Input: number of samplesM, action setAt, generative-model G (Eq. 1), statext−1
Output: selected actiona⋆

for each targetdo
generateM samples{x̂t} from G

end
for eacha inAt do

for each targetdo
get observation set from samplesõk

= g(x̃k
t , a)

compute visibility termαk(at), Eq. 17
compute the conditional entropy gain, Eq. 7

end
Get whole information gain,It(a), Eq. 23

end
Returna⋆ = arg maxa∈At {It(a)}
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6. Non-myopic approach

The solution proposed so far is myopic, i.e. the action to be performed at the next step
is selected only considering the current system state and the prediction for the next time step.
Better results could be achieved if we design a non-myopic approach, where the reward function
to be maximized considers more than one step in the future. A non-myopic approach would
outperform the myopic one when there are terms which are time-variant: a visibility map on the
scene (trees, houses or other occlusion that could prevent the tracker from working properly),
occlusions between targets that move close to each others, atarget that is leaving the field of
view or a target that is going far away from the camera where itwill be no longer visible. Indeed,
these are all examples of a realistic scenario, that we want to take into account. On the other
hand, reasoning on a longer temporal horizon requires a precise modeling of the target future
behavior in order to produce a reliable prediction of the targets trajectories.

6.1. Look-ahead algorithm
To solve the non-myopic approach we use a sampling strategy inspired by [48], that allows

approximate computation on a MDP with very large or infinite dimensionality of the state space.

Algorithm 2: Algorithm for the non-myopic approach
Function: computeQ(~,M,A,γ,G,xt−1)
Input: horizon~, number of samplesM, action setA, discount-factorγ, generative-model G
(Eq. 1), statext−1

Output: rewards (̂Q⋆
~
(xt, a1), . . . , Q̂⋆~(xt, aK))

if ~ = 0 then
Return (0, . . . ,0)

else
For each target generateM samples{x̂t} from G
For eacha inA getz= f (x̂t, a)
ComputeQ̂⋆

~
(x̂t, a) = I (x̂t, z|a)

Take therpL actions with highest̂Q⋆
~
(x̂t, a), for them get

Q̂⋆
~
(x̂t, a) = I (x̂t, z; a) + γ 1

M

∑

x̂t
computeV(~ − 1,M,A, γ,G, x̂t)

Return (Q̂⋆
~
(x̂t, a1), . . . , Q̂⋆~(x̂t, aK))

end
Function: computeV(~,M,A,γ,G,xt)
Input: horizon~, number of samplesM, action setA, discount-factorγ, generative-model G
(Eq. 1), statext

Output: valueV(xt, ~)
Let
(Q̂⋆

~
(xt, a1), . . . , Q̂⋆~(xt, aK)) =computeQ (~,M,A,γ,G,xt)

Return maxa∈{a1,...,aK }{Q̂
⋆
~
(xt, a)}

Function: SelectAction(~,M,A,γ,G,xt−1)
Input: horizon~, number of samplesM, action setA, discount-factorγ, generative-model G
(Eq. 1), statext−1

Output: actiona⋆

Let (Q̂⋆
~
(xt, a1), . . . , Q̂

⋆t
~

(xt, aK)) =computeQ (~,M,A,γ,G,xt−1)
Returna⋆ = arg maxa∈{a1,...,aL}{Q̂

⋆
~
(xt, a)}

The main idea is to estimate the future dynamic of the model bysampling the future observa-
tionszt from thep(ot |x−t , a). The sampled observationzt are used to update the statex̂t according
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to thep(xt |ot). The prediction and sampling iteration are repeated iteratively in future steps and
at each step the information gain is computed. The global information gain is computed as a
discounted sum of the current and future steps.

Let L be the maximum number of possible actions that are reachablefrom any actionat and
M the number of observations to sample at each time for each action. Exploiting the notation
of [48], we define the selection of the best action at timet over the finite horizon~ as:

a⋆t = arg max
at

Q(xt, at, ~), (24)

with:

Q(at, xt−1, ~) =
∑

zt

(I (xt; zt |at) + γV(x̂t, ~ − 1)),

V(x̂t+1, ~) = max
at+1

Q(at+1, x̂t+1, ~),

Q(at, xt−1,1) = I (xt; ot |a),

(25)

whereγ is the discount factor parameter. Such parameter balances the contribution of the in-
formation gain expected at the next step and the informationgain expected on later steps. A
complete recursive description of the algorithm is given inAlg. 2 while Fig. 7 gives a graphical
representation of the procedure. At the final step, in the leaves of the tree we can either compute
the information gain considering also the occlusion through the sampling procedure or compute
the closed form reward, that discards the occlusion effects.

We add the pruning parameterrp that allows to reduce the size of the tree to be explored,
discarding the least promising actions at the current step.The computational cost isO(L · K) for
the myopic case andO((K ·L)~ ·(M ·rp)~−1) for the non-myopic. The pruning factorrp is essential
when considering a system with many possible actions, we setit to rp = 0.1 in our experiments.

6.2. Summarizing samples for efficiency

The non-myopic approach should be extremely effective in case of occlusions that are con-
sidered in the look-ahead procedure via sampling. The number of samples that can be used in
our approach is really limited due to exponential growth of the tree in the number of samples.
In fact, each new sampled observation generates a state for the tracking algorithm that must be
propagated in the future. On the other hand, a small number ofsamples gives a very rough idea
on the expected state of the targets, in particular whether it would be visible or not.

We would like to better predict the expected information gain, keeping a reduced size of the
tree, i.e. keeping the same computational complexity as ifM = 1. To achieve this we first sample
M observations for each action and compute the expected information gain, but then these data
are merged, resulting in a single updated value for the filterstate. This statēx = 1

M

∑M
i=1 x̃ j is the

average of the states corresponding to each observation. Inthis way, we do not have to generate
a subtree for each of theM sample, but a single subtree for each action, as shown in Fig.7. Its
varianceP̄ is computed as the weighted geometrical mean between matrixto preserve the same
information gain, [58]:

P̄ = (P−)
1
2
(

(P−)−
1
2 P+(P−)−

1
2
)α(P−)

1
2 . (26)

such definition ensures that ifP+ andP− are symmetric and definite positive, alsoP̄ is. Moreover,
the entropyH̄ associated to a Gaussian distribution with varianceP̄ is exactly the weighted
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Figure 7: Scheme representing the selection of the best action through the look-ahead algorithm.Left Look-ahead opti-
mization according to the original method from [48] applied in[57]; Right: proposed approximation whichsummarizes
the samples at each horizon.

arithmetic mean of the entropy associated toP+ andP−, with weightα. This property guarantees
that the entropy obtained averaging over the samples is the same as the entropy associated to this
new statēx:

H(x̄) =
1
M

M
∑

j=1

H(x̃ j) =
1
M

M
∑

j=1

d̃ jH(x̃+j )+

+
1
M

M
∑

j=1

(1− d̃ j)H(x̃−j ) = αH(x̃+) + (1− α)H(x̃−),

(27)

whereα = 1
M

∑M
j=1 d̃ j . By applying this procedure we propagate only one subtree common to all

the M observations, thus the computational complexity reduces to O((K · L)~ · r~−1
p · M), which

is linear in the number of samples instead of exponential. The summarization causes the loss of
the multiple modes, represented by the samples, which are not propagated to future steps.

7. Extension to multiple cameras

The method presented in the previous sections describes an algorithm for efficiently and au-
tomatically managing a single PTZ camera in a standard multi-target tracking scenario. The
extension to a network of multiple PTZ cameras may be obtained in several ways. For exam-
ple [39] proposes a sequential Kalman filter to combine, in the update stage, the observations
of the same target as seen from different cameras. This approach can be applied also to the in-
formation gain formulation we proposed. Consider a setC of Nc cameras which successfully
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observe a targetxt at timet, the covariance resulting from the successive observationaccording
the sequential Kalman filter is the product:

P+t =

















∏

c∈C

(

I −Kc
t C

c
t
)

















P−t . (28)

As observed in [39] this equation depends on the order in which each camera is considered,
mainly because it does not take into account the fact that a camera could miss a target, i.eα(ac

t ) <
1 in Eq. 4. All the possible combinations are exponential in the number of cameras and therefore
not suitable for an online application. Hence, we approximate the updated covariance for a single
camera withα(ac

t ), from the weighted average of Eq. 26:

P̄c
t = (Pc,−)

1
2
(

(Pc,−)−
1
2
(

I −Kc
t C

c
t
)

Pc,−
t (Pc,−)−

1
2
)α(ac

t )(Pc,−)
1
2 . (29)

Then, the information gain for a single target across multiple cameras is obtained by successively
iterating such computation for each camera, substitutingPc,−

t = P̄t
c−1.

The formulation is similar to the one proposed in [39] exceptfor the fact that Eq. 29 replaces
the weighted sum. As introduced in Sec. 6, Eq. 29 guarantees that the entropy related to a gaus-
sian distribution with covariancēPt

c is the weighted sum of the entropy due to covariancesPc,−
t

andPc,+
t . This modification does not affect the computational cost, compared to [39]. Indeed, it

is exponential in the number of cameras,O(((K ·L)~ ·r~−1
p ·M)Nc), since all different combinations

of actions for the different cameras need to be evaluated.

8. Implementation and Evaluation Details

Experimenting PTZ tracking solutions is a classic problem in computer vision [59]. The
current protocols span between being quantitative and perfectly repeatable with a low real-
ism [26, 39], and considering real scenarios, where each test is qualitative and cannot be re-
peated [13, 60]. Here, we consider both the cases, providinga synthetic and a realistic exper-
imental benchmark, which are quantitative and repeatable,concluding with a real experiment
where our approach has been implemented in a real-time surveillance platform.

A direct comparison with the methods similar to ours [12, 13,40], described in Sec. 2, is not
possible without changing their own network architecture (number of cameras and the way they
communicate), or the experimental protocol (data and ground truth information used by previous
works). One of the main features of our system is that it integrates both the multi-target tracking
module and the camera management on a single PTZ device, differently from [12] which requires
a set of fixed cameras to track the targets and then drive the PTZ cameras towards the target of
interest. Both [13, 40] perform live experiments on their own video-surveillance network, hence
it is not possible to perform new tests on the same sequences.

We tried to compare our method with the solution proposed in [38], which is the only one
focusing on information theoretic management for a single PTZ camera. In particular, this is ob-
tained by simplifying our method (without the detector performance, the occlusion management
and the look-ahead optimization) in order to obtain an implementation as close as possible to
their method, apart for the fact that we are tracking the targets in the ground plane, instead of the
image plane as they do. Results in Sec. 9, 10 demonstrates that the contributions proposed in this
paper allow to outperform [38].
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8.1. Experimental Setup

We have performed two kind of experiments, synthetic and realistic, for both myopic and
non-myopic strategies in order to quantitatively and qualitatively asses the performance of our
approach. For the myopic method we have also performed a realexperiment with an off-the shelf
IP PTZ camera (Sony SNC-RZ30P).

The synthetic scenario consists in a 15× 15m area, with 7 targets following random trajecto-
ries mimicking human motion, Fig. 2 (a). The targets are always in the scene, thus the exploration
term Ip in Eq. 23 is not considered. We run 12 different sequences, each 50 frames long, with
diverse target trajectories, and compute the final scores averaging the per-sequence results. In
each sequence, we manage 350 target instances, which have tobe detected and associated to
tracks. The action set has 4 steps for the zoom, 7 for pan angleand 10 for tilt angle (i.e., L=280
different actions). To model the mechanical constraints the camera can move by a maximum
displacement of 2 steps for the angles and 1 for the zoom.

For the realistic experiments, as compromise between repeatability and realism, we consider
here the PETS 2009 (S2-L1-View1) benchmark, Fig. 2b, where intrinsic calibration matrixKc

and the extrinsic calibration information are provided. For reproducing the PTZ zoom 1, we
reduce the 576×768 resolution to 120×160. The homographyGptz for this virtual camera to the
3D plane isGptz = KcRptzK

−1
ptz, whereKptz andRptz are the intrinsic and the rotation PTZ matrices

(defined empirically). The original extrinsic calibrationdata allow to map the ground plane to
the original sequence image plane and then, through theHptz, to the virtual PTZ image plane.
The action set is made of 140 different actions, 7 for pan angle, 5 for tilt angle and 4 steps for
the zoom. The mechanical constraints of the camera are implemented as in the previous case.
The sequence is 795 frames longa and we sub-sample it every 2 frames. Globally, there are 19
different targets, for a total of 2322 true detections.

The whole framework has been implemented in MATLAB and it works at 10 fps for the
Gaussian integral solution of Eq. 8 and 0.3 fps for the sampling strategy of Eq. 21. However, it
is easily parallelizable both in the sampling stage and in evaluating Eq. 5 for the various actions.
Indeed, the evaluation of the expected information gain foreach action can be done indepen-
dently. With∆φ = 2, ∆θ = 2 and∆f = 1 the number of reachable actions varies between 18 (at
the corners of the grid) and 75. If enough parallel threads are available this can lead to a speedup
from 18x to 75x when computing the information gain for each action.

8.2. Evaluation Metrics

To ease future comparisons, we adopt standard multi-targettracking metrics: the Multiple
Object Tracking Accuracy (MOTA, the higher the better) which tells how reliable the tracks are
and the Multiple Object Tracking Precision (MOTP, the lowerthe better) [61], which measures
the error in localizing the tracked targets on the ground plane. In addition, we calculate the
average height of targets as detected in the image, analogously to [38]: the bigger a target appears
on the screen, the more information could be extracted for higher level tasks (recognition, re-
identification etc.). Other important parameters for appreciating the performance from different
strategies are the number of detections on the whole sequence and the average zoom value for
the camera.

We use three comparative control strategies: ‘fix’, keepingthe camera fixed at the lowest
zoom (1x), ‘patrol’, scanning the field of regard according to a preset sequence, ‘random’, per-
forming actions randomly chosen from the setA.
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Table 3: Synthetic data, ideal detector: comparison among standard strategies and the information theoretic strategy,
with and without the sampling (M=100) to cope with occlusions.

Strategy ‘fix’ ‘patrol’ ‘rnd’
MDP

‘intg’ ‘smpl’
MOTA 94.6 % 87.6% 79.7% 89.9% 97.0%

(MOTP [m]) (0.26 ) (0.35) (0.45) (0.23) (0.21)
Height [pix] 49.1 102.6 64.4 91.4 89.0

# Dets 278.3 75.8 55.5 186.3 214.2
Zoom [x] 1.00 2.54 2.53 2.05 2.00

Table 4: Synthetic data, realistic detector: comparison among standard strategies and the information theoretic strategy,
with and without the sampling (M=100) to cope with occlusions.

Strategy ‘fix’ ‘patrol’ ‘rnd’
MDP

‘intg’ ‘smpl’
MOTA 56.6 % 58.8% 14.0% 67.2% 72.8%

(MOTP [m]) (0.46) (0.47) (0.67) (0.33) (0.29)
Height [pix] 57.7 106.4 84.5 121.6 122.3

# Dets 54.5 38.3.8 15.0 80.0 89.8
Zoom [x] 1.00 2.54 2.46 2.64 2.61

We exploit the occlusion term of Eq. 17, comparing the Gaussian integral solution of Eq. 8,
namely ‘intg’ (that represent our implementation of [38]),with the sampling strategy of Eq. 21,
namely ‘smpl’.

9. Myopic Experiments

9.1. Synthetic Experiments for the Myopic Strategy

Two different experimental sessions are performed on the synthetic scenario, comparing the
formulations proposed above for two different types of pedestrian detectors.

A first session considers a perfect detector, whose performance does not decay for smaller
targets, but still worsens when the target gets occluded; results are in Tab. 3. The following
observations can be made: (1) both the ‘intg’ and ‘smpl’ approaches outperform the competing
PTZ strategies ‘patrol’ and ‘rnd’, both in terms of MOTA and MOTP; (2) the ‘fix’ policy is the
best among the competitors: actually, it detects a large number of targets (see # Dets), even
when they are small, due to the perfect detector; (3) the improvements of our approaches are
mainly due to the zooming on the targets (see Zoom [x]), whichboth creates more reliable tracks
(higher MOTA) and better localization (lower MOTP); (4) thesampling approach, that prevents
the camera from observing targets which may be occluded, outperforms the ‘intg’ approach.

Note that when using the ideal detector and the ‘intg’ version, which discards the occlusions,
our method slightly differs from the approach in [38]. In fact, in this case our approach only
considers the mechanical constraints of the camera and the physical extension of the targets as
additional elements. Hence, results also show a clear improvement with respect to [38].

In the second session, we consider Eq. 14, substituting the ideal detector with a realistic one,
which simulates the HOG performance (i.e. it works worse at small resolutions). Results are in
Tab. 4, leading to considerations similar to the previous test. The presence of a realistic detector
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Figure 8: Simulated PTZ on the PETS 2009 dataset.(a) Original frame from the dataset, with the tracked targets
trajectories and the PTZ field of view (black);(b) field of view for the simulated PTZ in the current position (resolution
is 160x120 pixels);(c) Top view of the exploration map that is used to compute the exploration term of Eq. 23;(d) Top
view of the warped ground plane where targets are moving, withthe estimated trajectories and covariances.

Table 5: PETS dataset, ideal detector: comparison among standard strategies and the information theoretic strategy, with
and without the sampling (M=100) to cope with occlusions.

Strategy ‘fix’ ‘patrol’ ‘rnd’
β = 9 β = 1

‘intg’ ‘smpl’ ‘intg’ ‘smpl’
MOTA 80.6% 50.7% 30.6% 75.2% 76.5% 64.8% 81.1%

(MOTP [m]) (0.20) (0.29) (0.39) (0.22) (0.22) (0.18) (0.17)
Height [pix] 19.9 38.5 29.3 37.5 39.2 31.8 36.4

# Dets 2160 414 567 998 895 1524 1513
Zoom [x] 1.00 2.00 1.55 1.97 2.08 1.63 1.87

brings in general to worse MOTA and MOTP scores. In addition,the #Dets in the ‘fix’ case
decreases dramatically (it cannot zoom to increment the number of detections), and, in general,
both the proposed approaches are better in this case. In fact, our strategies know that they need
to zoom more (see the Zoom values) to possibly get a detection. Again, the advantage of keeping
into account the occlusion term is evident.

9.2. Realistic Experiments on the S2-L1-View1 PETS Sequence for the Myopic Strategy

A different experimental setup uses a publicly available dataset (PETS2009) and its ground
truth for quantitative evaluation. Fig. 8 shows how a PTZ camera is simulated from the original
frame, and used to track targets on the ground plane, exploiting the calibration data.

In a first test, whose results are in Tab. 5, we employ the idealdetector, extracting the bound-
ing box from the ground-truth and removing the occluded ones. Since in this sequence people
are entering and leaving the scene, we include the exploration term (Eq.23), testing two different
values forβ. Considerations: (1) the sampling strategy gives better results for both values ofβ,
in terms of MOTA, MOTP, and Height; (2) since we have all the detections, MOTA is high also
for the fixed strategy. MOTP is higher with our policies, due to the possibility of zooming. (3)
reducingβ encourages to focus on the tracked targets (i.e., lower MOTP) instead of capturing
new items. The best value forβ should be a compromise between tracking accuracy and the
capability of capturing novel targets.

In the second test, we introduce a real implementation of theHOG detector, enriching the
realism of the simulation, and therefore introduce in the implementation the term in Eq. 14.
Results are in Tab. 6 and in general are dramatically lower than those in Tab. 5 because of the
many false positives and missed detections from the HOG detector. The improvement of the
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Table 6: PETS dataset. HOG detector: comparison among standard strategies and the information theoretic strategy,
with and without the sampling (M=100) to cope with occlusions.

Strategy ‘fix’ ‘patrol’ ‘rnd’
β = 9 β = 1

‘intg’ ‘smpl’ ‘intg’ ‘smpl’
MOTA 21.6% 19.0% 0.0% 28.3% 28.3% 31.6% 36.4%

(MOTP [m]) (0.36) (0.52) (0.52) (0.49) (0.48) (0.39) (0.38)
Height [pix] 19.5 37.7 28.5 42.7 42.8 48.4 50.6

# Dets 1886 370 581 435 440 714 716
Zoom [x] 1.00 2.00 1.48 2.94 2.33 2.58 2.70

Table 7: Synthetic data, ideal detector: comparison among standard strategies and the non-myopic information theoretic
strategy with occlusion handling with different horizons~, γ = 0.9, M = 100.

Strategy ‘fix’ ‘patrol’ ‘rnd’ ~ = 1 ~ = 2 ~ = 3
MOTA 94.6 % 87.6% 79.7% 97.0% 95.6% 92.1%

(MOTP [m]) (0.26) (0.36) (0.45) (0.21) (0.21) (0.21)
Height [pix] 49.1 102.6 64.4 89.0 88.6 94.7

# Dets 278.3 75.8 55.5 214.2 210.2 203.3
Zoom [x] 1 2.54 2.46 2.07 2.11 2.23

‘smpl’ method with respect to the competitor strategies is evident considering MOTA, this is due
to term in Eq. 14 that pushes the camera to increase the zoom with respect to the previous case
of the ideal detector. The MOTP is slightly better for the ‘fix’ strategy, but this is due to the fact
that it is computed only for the targets correctly tracked, that are less than for the ‘smpl’ case.

9.3. Real Trials for the Myopic Strategy

We also tested our system with a real-time off-the shelf IP PTZ camera, Sony SNC-RZ30P.
In order to estimate the calibration parameters of the PTZ camera while moving we use a method
similar to [62]. The action setA is made of 462 actions corresponding to the following grid: 14
values for pan× 11 tilt × 3 zoom. The step between two pan angles is 10.4°, for the tilt is 4.3°,
and the zoom values are 1x, 6x and 9x. We setβ = 0.667 and used the ‘intg’ approach, due to the
real-time constraints. The whole system works online at about 15 fps for the tracker and 3 fps
for the action selection. Some frames (videos are in supplementary material) are shown in Fig. 9
with a detailed description. The method produces a camera which is able to fully autonomous
move in the scene, according to the utility cost, and resulting in a “reasonable” behavior without
any supervision from a human operator or other sensors. Effective implementations of computer
vision algorithm on PTZ camera are really few, and as far as weknow it is the first time a
sophisticated algorithm is successfully applied to a standalone PTZ camera.

10. Non-Myopic Experiment

10.1. Synthetic Experiments for the Non-Myopic Strategy

A first session considers a perfect detector, whose performance does not decay for smaller
targets, but still worsens as the target gets occluded. Results are in Tab. 7;~ = 1 indicates the
myopic approach,~ = 2,3 address the non-myopic strategy, with horizon 2 and 3, respectively.
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Figure 9: An illustration of camera management with two targets. Targets are marked with their 3D bounding box, the
covariance spread of the filter estimate is given by the ellipse. The camera chooses the position automatically, according
to the reward function defined in the paper. The resulting behavior produces the following patterns: (1-8) The camera
‘jumps’ between the targets to maximize their localization precision; (9-12) Once the two targets are well localized, the
camera widens its field of view to search for novel targets (best in colors).

Many observations can be made: (1) for all the three values of~ and in terms of MOTA
and MOTP our approach outperforms the other competitors. (2) The ‘fix’ strategy is the best
among the competitors: actually, it detects a large number of targets (see #Dets), even when
they are small, due to the perfect detector. The improvementof the myopic approach (~ = 1)
is mainly due to the zooming on the targets (see Zoom [x]), which both creates more reliable
tracks (higher MOTA) and better localization (lower MOTP).In this scenario the non-myopic
approach~ = 2,3 does not improve the MOTA metric but provides higher resolution images
for the targets. This happens because typically the set of tracked targets is divided on the future
steps, hence the camera precisely focuses on few targets at each time. Anyway being the detector
ideal, the targets are detected even when they are small in the image, for this reason the MOTA
is at is maximum value for~ = 1. For a deeper understanding of the non-myopic approach,
Fig. 10 visualizes the action selection process: the information gain for all the reachable actions
is evaluated considering the contribution of each target ateach horizon.

In the second session we substitute through Eq. 14 the ideal detector with another one, which
simulates the HOG performance. Results are in Tab. 8, leading to considerations similar to the
previous test. In addition, the presence of a realistic detector brings in general to lower MOTA
and MOTP scores. The #Dets in the ‘fix’ case decreases dramatically (it cannot zoom for taking
care of the detector) and in general all the comparative approaches are better in this respect In
fact, our strategies know that they need to zoom more (see theZoom values) to possibly get a
detection. From these simulations, it seems that the best horizon is (~ = 2). This indicates a
natural limit of the system in going too far in the future, andthis is reasonable. If the target
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Figure 10: View of the environment for the synthetic experiments in two consecutive frames,t = 23,24. In each of
the two frames, some useful data are shown.a) Image plane for the PTZ on the synthetic scenario;b) Top view of the
ground plane where the targets are moving, their movement is limited in a square area of 15×15 meters;c) Information
gain I (xt , ot |at) for the 10 best poses (the contribution from the 3 horizon weighted byγ is highlighted), for each target at
each horizon this term is computed using Eq. 7, the two termsα(at) andH(x+) are shown in the other two plots,d) and
e). This figure shows a case in which the myopic and non-myopic strategy would choose 2 different actions: att = 23
the non-myopic chooses action 1, whereas the myopic would choose action 2, since it cannot predict that waiting to look
the red target att = 24 would bring an higher global information gain.

Table 8: Synthetic data, realistic detector: comparison among standard strategies and the non-myopic information theo-
retic strategy with occlusion handling with different horizons~, γ = 0.9, M = 100.

Strategy ‘fix’ ‘patrol’ ‘rnd’ ~ = 1 ~ = 2 ~ = 3
MOTA 56.6% 58.8% 14.0% 72.8% 80.8% 71.6%

(MOTP [m]) (0.45) (0.46) (0.67) (0.29) (0.31) (0.32)
Height [pix] 57.7 106.4 84.4 122.3 119.5 123.1

# Dets 54.5 38.3 15.0 89.8 75.0 81.1
Zoom [x] 1 2.54 2.50 2.62 2.66 2.71
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Table 9: PETS dataset, using the detections from GT (except in case they are occluded): comparison among standard
strategies and the non-myopic information theoretic strategy with occlusion handling with different horizons~, γ = 0.9,
β = 0.4, M = 100.

Strategy ‘fix’ ‘patrol’ ‘rnd’ ~ = 1 ~ = 2 ~ = 3
MOTA 80.6% 50.7% 30.6% 79.7% 82.1 % 76.1 %

(MOTP [m]) (0.20) (0.40) (0.39) (0.16) (0.17) (0.18)
Height [pix] 19.9 38.5 29.3 34.9 35.0 36.1

# Dets 2160 414 567 1631 1542 1536
Zoom [x] 1.00 2.00 1.55 1.79 1.79 1.86

Table 10: PETS dataset, HOG detector: comparison among standard strategies and the non-myopic information theoretic
strategy with occlusion handling with different horizons~, γ = 0.9, β = 0.4, M = 100.

Strategy ‘fix’ ‘patrol’ ‘rnd’ ~ = 1 ~ = 2 ~ = 3
MOTA 21.6% 19.0% -3.6% 60.5% 64.1% 70.5%

MOTP [m] (0.35) (0.52) (0.51) (0.30) (0.34) (0.33)
Height [pix] 19.5 37.7 28.5 37.9 34.9 38.9

# Dets 1886 370 581 1292 1353 1231
Zoom [x] 1.00 2.00 1.48 2.00 1.79 2.01

abruptly changes directions, when close to the boundaries of the limited area, the EKF engine is
not able to predict far in future the probability density forthe target’s position. Thus, an action
selected relying on such prediction could not be the best.

10.2. Realistic Experiments on the S2-L1-View1 PETS Sequence for the Non-Myopic Strategy

In Tab. 9 we report the results on the PETS sequence using the ground truth as detector. As it
can be seen the non-myopic approach obtain slightly better performance than the myopic version
in terms of accuracy (MOTA). The best horizon is~ = 2 since we obtain the highest MOTA
value and an high accuracy in the localization. In this first setting the detector is not affected
by the target size: all the non occluded targets, even at verylow resolution (less than 20 pixels)
are correctly detected. For this reason the ‘fix’ strategy has the second best MOTA. Anyway,
the zooming capability of the camera helps in the localization. In fact, the MOTP is lower for
~ = 1,2,3 and results in a higher average size of targets on the image plane 36.1 pixels for~ = 3
while the ‘fix’ strategy obtain 19.9 pixels.

In the second test, we introduce a real implementation of theHOG detector, enriching the
realism of the simulation. Since we noticed that the HOG detector was performing quite well
on this dataset, better than the expected performance (Fig.4), we did not put the detection term
in the estimation (Kd = +∞, r0 = +∞). The results are in Tab. 10. Even in this case, the non-
myopic approach does considerable better than the myopic version, as witnessed by the MOTA
score. In this case, the best horizon is~ = 3 since the dynamics of the targets is simpler, with
less changes in directions. Therefore, our model (and the EKF dynamics) can predict the future
target trajectories with more reliability.
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11. Conclusions

In this paper, we propose a novel solution to perform sensor management of a single PTZ
camera for multiple target tracking. Such solution considers the detector performance at different
image resolutions and occlusion ratios. Moreover, it considers the effects of a different camera
pose to targets localization. To further improve the tracking performance we apply a non-myopic
approach which considers future occlusions among targets in selecting the next actions. We
analyze the characteristics and demonstrate the effectiveness of our approach through, synthetic
experiments, realistic simulations and effective real-time trials on a real PTZ camera.

Appendix A. Measurement Accuracy while Zooming

Assuming a constant image measurement error and perfect calibration, world coordinate lo-
calization is much more accurate if the backprojection is performed using zoomed views (i.e.
long focal length).

We derive analytically the expression that allows to appreciate how zoom affects the measure-
ment equation in the recursive filtering formulation. Measurement uncertainty is mainly oriented
along the direction of instantaneous depth because of the panning camera capability. According
to this, uncertainty can be quantified assuming a 1D projective camera parametrized by the tilt
angleθ in the instantaneous plane rotating around the vertical camera axis and focal lengthf .

Without loss of generality let’s consider that the principal point lies at the image center:
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We further have:
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The 1-D camera projection matrixP = K[R|t] results in:
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wheret = [0 − d]⊤ andd is the camera distance with respect to the scene plane. Beingthe scene
planeZ = 0, the 1D homography from world to image can be computed from Eq. (A.3):
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The inverse:
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can be used to compute the back-projected uncertainty of a given noise uncertaintyǫ assumed in
the camera image sensor and compute its backprojectionδ. Without loss of generality and for
the sake of simplicity, let’s define:
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their corresponding backprojected points:

x′1 = H
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are used to compute:

δ = x′2 − x′1 =
ǫ d

sin(θ) ǫ − f cos(θ)
. (A.9)

Givenǫ, θ andd, the value ofδ can be increased by increasing the focal length (i.e. performing
zoom-in).
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