Filter-based feature selection has become crucial in many classification settings, especially object recognition, recently faced with feature learning strategies that originate thousands of cues. In this paper, we propose a feature selection method exploiting the convergence properties of power series of matrices, and introducing the concept of infinite feature selection (Inf-FS). Considering a selection of features as a path among feature distributions and letting these paths tend to an infinite number permits the investigation of the importance (relevance and redundancy) of a feature when injected into an arbitrary set of cues. Ranking the importance individuates candidate features, which turn out to be effective from a classification point of view, as proved by a thoroughly experimental section. The Inf-FS has been tested on thirteen diverse benchmarks, comparing against filters, embedded methods, and wrappers; in all the cases we achieve top performances, notably on the classification tasks of PASCAL VOC 2007-2012.

Infinite Feature Selection

ROFFO, GIORGIO;MELZI, SIMONE;CRISTANI, Marco
2015-01-01

Abstract

Filter-based feature selection has become crucial in many classification settings, especially object recognition, recently faced with feature learning strategies that originate thousands of cues. In this paper, we propose a feature selection method exploiting the convergence properties of power series of matrices, and introducing the concept of infinite feature selection (Inf-FS). Considering a selection of features as a path among feature distributions and letting these paths tend to an infinite number permits the investigation of the importance (relevance and redundancy) of a feature when injected into an arbitrary set of cues. Ranking the importance individuates candidate features, which turn out to be effective from a classification point of view, as proved by a thoroughly experimental section. The Inf-FS has been tested on thirteen diverse benchmarks, comparing against filters, embedded methods, and wrappers; in all the cases we achieve top performances, notably on the classification tasks of PASCAL VOC 2007-2012.
2015
978-1-4673-8391-2
Feature Selection, Variable Ranking, Feature Ranking, Centrality, Graph Theory
File in questo prodotto:
File Dimensione Formato  
07410835.pdf

solo utenti autorizzati

Tipologia: Versione dell'editore
Licenza: Accesso ristretto
Dimensione 221.61 kB
Formato Adobe PDF
221.61 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11562/930202
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 277
  • ???jsp.display-item.citation.isi??? 225
social impact