Cancer molecular heterogeneity might explain the variable response of EGFR mutant lung adenocarcinomas to tyrosine kinase inhibitors (TKIs). We assessed the mutational status of 22 cancer genes by next-generation sequencing (NGS) in poor, intermediate or good responders to first-line gefitinib. Clinical outcome was correlated with Additional Coexisting Mutations (ACMs) and the EGFR Proportion of Mutated Alleles (PMA). Thirteen ACMs were found in 10/17 patients: TP53 (n=6), KRAS (n=2), CTNNB1 (n=2), PIK3CA, SMAD4 and MET (n=1 each). TP53 mutations were exclusive of poor/intermediate responders (66.7% versus 0, p=0.009). Presence of ACMs significantly affected both PFS (median 3.0 versus 12.3 months, p=0.03) and survival (3.6 months versus not reached, p=0.03). TP53 mutation was the strongest negative modifier (median PFS 4.0 versus 14.0 months). Higher EGFR PMA was present in good versus poor/intermediate responders. Median PFS and survival were longer in patients with EGFR PMA ≥0.36 (12.0 versus 4.0 months, p=0.31; not reached versus 18.0 months, p=0.59). Patients with an EGFR PMA ≥0.36 and no ACMs fared significantly better (p=0.03), with a trend towards increased survival (p=0.06). Our exploratory data suggest that a quantitative (PMA) and qualitative (ACMs) molecular heterogeneity assessment using NGS might be useful for a better selection of patients.

Molecular heterogeneity assessment by next-generation sequencing and response to gefitinib of EGFR mutant advanced lung adenocarcinoma

Bria, Emilio;PILOTTO, Sara;AMATO, Eliana;BRUNELLI, Matteo;CORBO, Vincenzo;GILIOLI, ELIANA;Milella, M;CHILOSI, Marco;SCARPA, Aldo;TORTORA, GIAMPAOLO
2015-01-01

Abstract

Cancer molecular heterogeneity might explain the variable response of EGFR mutant lung adenocarcinomas to tyrosine kinase inhibitors (TKIs). We assessed the mutational status of 22 cancer genes by next-generation sequencing (NGS) in poor, intermediate or good responders to first-line gefitinib. Clinical outcome was correlated with Additional Coexisting Mutations (ACMs) and the EGFR Proportion of Mutated Alleles (PMA). Thirteen ACMs were found in 10/17 patients: TP53 (n=6), KRAS (n=2), CTNNB1 (n=2), PIK3CA, SMAD4 and MET (n=1 each). TP53 mutations were exclusive of poor/intermediate responders (66.7% versus 0, p=0.009). Presence of ACMs significantly affected both PFS (median 3.0 versus 12.3 months, p=0.03) and survival (3.6 months versus not reached, p=0.03). TP53 mutation was the strongest negative modifier (median PFS 4.0 versus 14.0 months). Higher EGFR PMA was present in good versus poor/intermediate responders. Median PFS and survival were longer in patients with EGFR PMA ≥0.36 (12.0 versus 4.0 months, p=0.31; not reached versus 18.0 months, p=0.59). Patients with an EGFR PMA ≥0.36 and no ACMs fared significantly better (p=0.03), with a trend towards increased survival (p=0.06). Our exploratory data suggest that a quantitative (PMA) and qualitative (ACMs) molecular heterogeneity assessment using NGS might be useful for a better selection of patients.
2015
EGFR, gefitinib, lung cancer, next-generation sequencing
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11562/915787
Citazioni
  • ???jsp.display-item.citation.pmc??? 32
  • Scopus 56
  • ???jsp.display-item.citation.isi??? 55
social impact