Several approaches have been proposed for co-simulation between QEMU and SystemC. On the contrary, no paper addresses integration between Open Virtual Platform (OVP) and SystemC. Indeed, OVP models and the related simulator can be integrated into SystemC designs by using TLM 2.0 wrappers and opportune OVP APIs. However, this solution presents some disadvantages, like the incapability of supporting cycle-accurate models, and the necessity of re-design, in terms of SystemC modules, all OVP components that should be integrated in the target platform. To avoid such drawbacks, and provide an easy way to port SystemC models from a QEMU-based to an OVP-based virtual platform and vice versa, this paper presents a common co-simulation approach that works for integrating SystemC components with both QEMU and OVP.
A common architecture for co-simulation of SystemC models in QEMU and OVP virtual platforms
LONARDI, ALESSANDRO;PRAVADELLI, Graziano
2014-01-01
Abstract
Several approaches have been proposed for co-simulation between QEMU and SystemC. On the contrary, no paper addresses integration between Open Virtual Platform (OVP) and SystemC. Indeed, OVP models and the related simulator can be integrated into SystemC designs by using TLM 2.0 wrappers and opportune OVP APIs. However, this solution presents some disadvantages, like the incapability of supporting cycle-accurate models, and the necessity of re-design, in terms of SystemC modules, all OVP components that should be integrated in the target platform. To avoid such drawbacks, and provide an easy way to port SystemC models from a QEMU-based to an OVP-based virtual platform and vice versa, this paper presents a common co-simulation approach that works for integrating SystemC components with both QEMU and OVP.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.