Slab waveguides were fabricated in Er-doped tungsten-tellurite glass and CaF(2) crystal samples via ion implantation. Waveguides were fabricated by implantation of MeV energy N(+) ions at the Van de Graaff accelerator of the Research Institute for Particle and Nuclear Physics, Budapest, Hungary. Part of the samples was annealed. Implantations were carried out at energies of 1.5 MeV (tungsten-tellurite glass) and 3.5 MeV (CaF(2)). The implanted doses were between 5 x 10(12) and 8 x 10(16) ions/cm(2). Refractive index profile of the waveguides was measured using SOPRA ES4G and Woollam M-2000DI spectroscopic ellipsometers at the Research Institute for Technical Physics and Materials Science, Budapest. Functionality of the waveguides was tested using a home-made instrument (COMPASSO), based on m-line spectroscopy and prism coupling technique, which was developed at the Materials and Photonics Devices Laboratory (MDF Lab.) of the Institute of Applied Physics in Sesto Fiorentino, Italy. Results of both types of measurements were compared to depth distributions of nuclear damage in the samples, calculated by SRIM 2007 code. Thicknesses of the guiding layer and of the implanted barrier obtained by spectroscopic ellipsometry correspond well to SRIM simulations. Irradiation-induced refractive index modulation saturated around a dose of 8 x 10(16) ions/cm(2) in tungsten-tellurite glass. Annealing of the implanted waveguides resulted in a reduction of the propagation loss, but also reduced the number of supported guiding modes at the lower doses. We report on the first working waveguides fabricated in an alkali earth halide crystal implanted by MeV energy medium-mass ions.

Characterisation of slab waveguides, fabricated in CaF2 and Er-doped tungsten-tellurite glass by MeV energy N+ ion implantation, using spectroscopic ellipsometry and m-line spectroscopy

BETTINELLI, Marco Giovanni;SPEGHINI, Adolfo
2010-01-01

Abstract

Slab waveguides were fabricated in Er-doped tungsten-tellurite glass and CaF(2) crystal samples via ion implantation. Waveguides were fabricated by implantation of MeV energy N(+) ions at the Van de Graaff accelerator of the Research Institute for Particle and Nuclear Physics, Budapest, Hungary. Part of the samples was annealed. Implantations were carried out at energies of 1.5 MeV (tungsten-tellurite glass) and 3.5 MeV (CaF(2)). The implanted doses were between 5 x 10(12) and 8 x 10(16) ions/cm(2). Refractive index profile of the waveguides was measured using SOPRA ES4G and Woollam M-2000DI spectroscopic ellipsometers at the Research Institute for Technical Physics and Materials Science, Budapest. Functionality of the waveguides was tested using a home-made instrument (COMPASSO), based on m-line spectroscopy and prism coupling technique, which was developed at the Materials and Photonics Devices Laboratory (MDF Lab.) of the Institute of Applied Physics in Sesto Fiorentino, Italy. Results of both types of measurements were compared to depth distributions of nuclear damage in the samples, calculated by SRIM 2007 code. Thicknesses of the guiding layer and of the implanted barrier obtained by spectroscopic ellipsometry correspond well to SRIM simulations. Irradiation-induced refractive index modulation saturated around a dose of 8 x 10(16) ions/cm(2) in tungsten-tellurite glass. Annealing of the implanted waveguides resulted in a reduction of the propagation loss, but also reduced the number of supported guiding modes at the lower doses. We report on the first working waveguides fabricated in an alkali earth halide crystal implanted by MeV energy medium-mass ions.
2010
9780819481924
slab waveguides; ion implantation; Er-doped tellurite glass
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11562/741763
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact