SGGS (Semantically-Guided Goal-Sensitive theorem proving) is a clausal theorem-proving method, with a seemingly rare combination of properties: it is first order, DPLL-style model based, semantically guided, goal sensitive, and proof confluent. SGGS works with constrained clauses, and uses a sequence of constrained clauses to represent a tentative model of the given set of clauses.A basic building block in SGGS inferences is splitting, which partitions a clause into clauses that have the same set of ground instances. Splitting introduces constraints and their manipulation, which is the subject of this paper. Specifically, splitting a clause with respect to another clause requires to compute their difference, which captures the ground instances of one that are not ground instances of the other. We give a set of inference rules to compute clause difference, and reduce SGGS constraints to standard form, and we prove that it is guaranteed to terminate, provided the standardization rules are applied only within the clause difference computation.

Constraint manipulation in SGGS

BONACINA, Maria Paola
;
2014-01-01

Abstract

SGGS (Semantically-Guided Goal-Sensitive theorem proving) is a clausal theorem-proving method, with a seemingly rare combination of properties: it is first order, DPLL-style model based, semantically guided, goal sensitive, and proof confluent. SGGS works with constrained clauses, and uses a sequence of constrained clauses to represent a tentative model of the given set of clauses.A basic building block in SGGS inferences is splitting, which partitions a clause into clauses that have the same set of ground instances. Splitting introduces constraints and their manipulation, which is the subject of this paper. Specifically, splitting a clause with respect to another clause requires to compute their difference, which captures the ground instances of one that are not ground instances of the other. We give a set of inference rules to compute clause difference, and reduce SGGS constraints to standard form, and we prove that it is guaranteed to terminate, provided the standardization rules are applied only within the clause difference computation.
2014
Herbrand constraints; Termination; Automated theorem proving
File in questo prodotto:
File Dimensione Formato  
UNIF-FLOC2014sggs.pdf

accesso aperto

Descrizione: Articolo
Tipologia: Documento in Post-print
Licenza: Creative commons
Dimensione 131.7 kB
Formato Adobe PDF
131.7 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11562/730361
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact