This paper reports the results of the SHREC'14 track: Retrieval and classification on textured 3D models, whose goal is to evaluate the performance of retrieval algorithms when models vary either by geometric shape or texture, or both. The collection to search in is made of 572 textured mesh models, having a two-level classification based on geometry and texture. Together with the dataset, a training set of 96 models was provided. The track saw eight participants and the submission of 22 runs, to either the retrieval or the classification contest, or both. The evaluation results show a promising scenario about textured 3D retrieval methods, and reveal interesting insights in dealing with texture information in the CIELab rather than in the RGB colour space.
Retrieval and Classification on Textured 3D Models
GARRO, Valeria;GIACHETTI, Andrea;
2014-01-01
Abstract
This paper reports the results of the SHREC'14 track: Retrieval and classification on textured 3D models, whose goal is to evaluate the performance of retrieval algorithms when models vary either by geometric shape or texture, or both. The collection to search in is made of 572 textured mesh models, having a two-level classification based on geometry and texture. Together with the dataset, a training set of 96 models was provided. The track saw eight participants and the submission of 22 runs, to either the retrieval or the classification contest, or both. The evaluation results show a promising scenario about textured 3D retrieval methods, and reveal interesting insights in dealing with texture information in the CIELab rather than in the RGB colour space.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.