In this paper we propose a pipeline to integrate breast diffusion and perfusion MRI for diagnosis, surgical planning and follow-up. Dynamic contrast enhanced (DCE) and diffusion weighted (DWI) MRI provide complementary information on the tissue structure and properties: while DCE-MRI allows the characterization of the lesion angiogenesis, DWI techniques can probe the apparent diffusion coefficient (ADC) and therefore assess the nature and cellularity of the lesions. Here we propose a two-step process for the integration of these modalities. First, dissimilarity-based clustering is performed on DCE-MRI to identify the different tumoral subregions. These are then mapped onto the DWI images following inter-modal registration. The probability density functions (PDFs) of the so-identified subregions in the ADC map are extracted and compared through non-parametric testing. Results show that subregions corresponding to different clusters hold statistically different PDFs, indicating a degree of consistency in the information obtained from the two modalities while providing a posterior validation of the registration method. This enables the efficient integration of the information brought by DCE and DWI, respectively, while taking advantage of their complementarity.

Multimodal MRI-based tissue classification in breast ductal carcinoma

MENDEZ GUERRERO, Carlos Andres;PIZZORNI FERRARESE, Francesca;MENEGAZ, Gloria
2012-01-01

Abstract

In this paper we propose a pipeline to integrate breast diffusion and perfusion MRI for diagnosis, surgical planning and follow-up. Dynamic contrast enhanced (DCE) and diffusion weighted (DWI) MRI provide complementary information on the tissue structure and properties: while DCE-MRI allows the characterization of the lesion angiogenesis, DWI techniques can probe the apparent diffusion coefficient (ADC) and therefore assess the nature and cellularity of the lesions. Here we propose a two-step process for the integration of these modalities. First, dissimilarity-based clustering is performed on DCE-MRI to identify the different tumoral subregions. These are then mapped onto the DWI images following inter-modal registration. The probability density functions (PDFs) of the so-identified subregions in the ADC map are extracted and compared through non-parametric testing. Results show that subregions corresponding to different clusters hold statistically different PDFs, indicating a degree of consistency in the information obtained from the two modalities while providing a posterior validation of the registration method. This enables the efficient integration of the information brought by DCE and DWI, respectively, while taking advantage of their complementarity.
2012
9781457718571
breast cancer; diffusion MRI; tissue classification
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11562/472409
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 2
social impact