We propose a new scheme for detecting and localizing the abnormal crowd behavior in video sequences. The proposed method starts from the assumption that the interaction force, as estimated by the Social Force Model (SFM), is a significant feature to analyze crowd behavior. We step forward this hypothesis by optimizing this force using Particle Swarm Optimization (PSO) to perform the advection of a particle population spread randomly over the image frames. The population of particles is drifted towards the areas of the main image motion, driven by the PSO fitness function aimed at minimizing the interaction force, so as to model the most diffused, normal, behavior of the crowd. In this way, anomalies can be detected by checking if some particles (forces) do not fit the estimated distribution, and this is done by a RANSAC-like method followed by a segmentation algorithm to finely localize the abnormal areas. A large set of experiments are carried out on public available datasets, and results show the consistent higher performances of the proposed method as compared to other state-of-the-art algorithms, proving the goodness of the proposed approach.
Abnormal crowd behavior detection by social force optimization
CRISTANI, Marco;MURINO, Vittorio
2011-01-01
Abstract
We propose a new scheme for detecting and localizing the abnormal crowd behavior in video sequences. The proposed method starts from the assumption that the interaction force, as estimated by the Social Force Model (SFM), is a significant feature to analyze crowd behavior. We step forward this hypothesis by optimizing this force using Particle Swarm Optimization (PSO) to perform the advection of a particle population spread randomly over the image frames. The population of particles is drifted towards the areas of the main image motion, driven by the PSO fitness function aimed at minimizing the interaction force, so as to model the most diffused, normal, behavior of the crowd. In this way, anomalies can be detected by checking if some particles (forces) do not fit the estimated distribution, and this is done by a RANSAC-like method followed by a segmentation algorithm to finely localize the abnormal areas. A large set of experiments are carried out on public available datasets, and results show the consistent higher performances of the proposed method as compared to other state-of-the-art algorithms, proving the goodness of the proposed approach.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.