The Minimum Duplication problem is a well-known problem in phylogenetics and comparative genomics. Given a set of gene trees, the Minimum Duplication problem asks for a species tree that induces the minimum number of gene duplications in the input gene trees. More recently, a variant of the Minimum Duplication problem, called Minimum Duplication Bipartite, has been introduced in [14], where the goal is to find all pre-duplications, that is duplications that precede, in the evolution, the first speciation with respect to a species tree. In this paper, we investigate the complexity of both Minimum Duplication and Minimum Duplication Bipartite problems. First of all, we prove that the Minimum Duplication problem is APX-hard, even when the input consists of five uniquely leaf-labelled gene trees (progressing on the complexity of the problem). Then, we show that the Minimum Duplication Bipartite problem can be solved efficiently by a randomized algorithm when the input gene trees have bounded depth.
Complexity Insights of the Minimum Duplication Problem
RIZZI, ROMEO;
2012-01-01
Abstract
The Minimum Duplication problem is a well-known problem in phylogenetics and comparative genomics. Given a set of gene trees, the Minimum Duplication problem asks for a species tree that induces the minimum number of gene duplications in the input gene trees. More recently, a variant of the Minimum Duplication problem, called Minimum Duplication Bipartite, has been introduced in [14], where the goal is to find all pre-duplications, that is duplications that precede, in the evolution, the first speciation with respect to a species tree. In this paper, we investigate the complexity of both Minimum Duplication and Minimum Duplication Bipartite problems. First of all, we prove that the Minimum Duplication problem is APX-hard, even when the input consists of five uniquely leaf-labelled gene trees (progressing on the complexity of the problem). Then, we show that the Minimum Duplication Bipartite problem can be solved efficiently by a randomized algorithm when the input gene trees have bounded depth.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.