In this paper the problem of computing a rigid object trajectory in an environment populated with deformable objects is addressed. The problem arises in Minimally Invasive Robotic Surgery (MIRS) from the needs of reaching a point of interest inside the anatomy with rigid laparoscopic instruments. We address the case of abdominal surgery. The abdomen is a densely populated soft environment and it is not possible to apply classical techniques for obstacle avoidance because a collision free solution is, most of the time, not feasible. In order to have a convergent algorithm with, at least, one possible solution we have to relax the constraints and allow collision under a specific contact threshold to avoid tissue damaging. In this work a new approach for trajectory planning under these peculiar conditions is implemented. The method computes offline the path which is then tested in a surgical simulator as part of a pre-operative surgical plan.

Trajectory planning with task constraints in densely filled environments

Maris Bogdan
;
2010-01-01

Abstract

In this paper the problem of computing a rigid object trajectory in an environment populated with deformable objects is addressed. The problem arises in Minimally Invasive Robotic Surgery (MIRS) from the needs of reaching a point of interest inside the anatomy with rigid laparoscopic instruments. We address the case of abdominal surgery. The abdomen is a densely populated soft environment and it is not possible to apply classical techniques for obstacle avoidance because a collision free solution is, most of the time, not feasible. In order to have a convergent algorithm with, at least, one possible solution we have to relax the constraints and allow collision under a specific contact threshold to avoid tissue damaging. In this work a new approach for trajectory planning under these peculiar conditions is implemented. The method computes offline the path which is then tested in a surgical simulator as part of a pre-operative surgical plan.
2010
978-1-4244-6674-0
robotisc, planning
File in questo prodotto:
File Dimensione Formato  
IIPlanner.pdf

accesso aperto

Descrizione: Articolo principale
Tipologia: Documento in Pre-print
Licenza: Dominio pubblico
Dimensione 80.78 kB
Formato Adobe PDF
80.78 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11562/413542
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 12
  • ???jsp.display-item.citation.isi??? 5
social impact