We give improved algorithms for constructing minimum directed and undirected cycle bases in graphs. For general graphs, the new algorithms are Monte Carlo and have running time O(m^ω ), where ω is the exponent of matrix multiplication. The previous best algorithm had running time O(m^2 n). For planar graphs, the new algorithm is deterministic and has running time O(n^2). The previous best algorithm had running time O(n^2 log n). A key ingredient to our improved running times is the insight that the search for minimum bases can be restricted to a set of candidate cycles of total length O(nm).
Titolo: | Breaking the O(m^2 n) Barrier for Minimum Cycle Bases. |
Autori: | |
Data di pubblicazione: | 2009 |
Abstract: | We give improved algorithms for constructing minimum directed and undirected cycle bases in graphs. For general graphs, the new algorithms are Monte Carlo and have running time O(m^ω ), where ω is the exponent of matrix multiplication. The previous best algorithm had running time O(m^2 n). For planar graphs, the new algorithm is deterministic and has running time O(n^2). The previous best algorithm had running time O(n^2 log n). A key ingredient to our improved running times is the insight that the search for minimum bases can be restricted to a set of candidate cycles of total length O(nm). |
Handle: | http://hdl.handle.net/11562/409548 |
ISBN: | 9783642041273 |
Appare nelle tipologie: | 04.01 Contributo in atti di convegno |
File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.