In kernel-based machine learning algorithms, we can learn a combination of different kernel functions in order to obtain a similarity measure that better matches the underlying problem instead of using a single fixed kernel function. This approach is called multiple kernel learning (MKL). In this paper, we formulate a nonlinear MKL variant and apply it for nuclei classification in tissue microarray images of renal cell carcinoma (RCC). The proposed variant is tested on several feature representations extracted from the automatically segmented nuclei. We compare our results with single-kernel support vector machines trained on each feature representation separately and three linear MKL algorithms from the literature. We demonstrate that our variant obtains more accurate classifiers than competing algorithms for RCC detection by combining information from different feature representations nonlinearly.

Combining Data Sources Nonlinearly for Cell Nucleus Classification of Renal Cell Carcinoma

CASTELLANI, Umberto;MURINO, Vittorio
2011-01-01

Abstract

In kernel-based machine learning algorithms, we can learn a combination of different kernel functions in order to obtain a similarity measure that better matches the underlying problem instead of using a single fixed kernel function. This approach is called multiple kernel learning (MKL). In this paper, we formulate a nonlinear MKL variant and apply it for nuclei classification in tissue microarray images of renal cell carcinoma (RCC). The proposed variant is tested on several feature representations extracted from the automatically segmented nuclei. We compare our results with single-kernel support vector machines trained on each feature representation separately and three linear MKL algorithms from the literature. We demonstrate that our variant obtains more accurate classifiers than competing algorithms for RCC detection by combining information from different feature representations nonlinearly.
2011
9783642244704
Multiple Kernel Learning; Shape analysis; Pattern Recognition
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11562/368254
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact