We apply shape analysis by means of heat diffusion and we show that dissimilarity space constructed using the features extracted from heat diffusion present a promising way of discriminating between schizophrenic patients and healthy controls. We use 30 patients and 30 healthy subjects and we show the effect of several dissimilarity measures on the classification accuracy of schizophrenia using features extracted by heat diffusion. As a novel approach, we propose an adaptation of random subspace method to select random subsets of bins from the original histograms; and by combining the dissimilarity matrices computed by this operation, we enrich the dissimilarity space and show that we can achieve higher accuracies.

Heat Diffusion Based Dissimilarity Analysis for Schizophrenia Classification

CASTELLANI, Umberto;MURINO, Vittorio;BELLANI, Marcella;TANSELLA, Michele;
2011-01-01

Abstract

We apply shape analysis by means of heat diffusion and we show that dissimilarity space constructed using the features extracted from heat diffusion present a promising way of discriminating between schizophrenic patients and healthy controls. We use 30 patients and 30 healthy subjects and we show the effect of several dissimilarity measures on the classification accuracy of schizophrenia using features extracted by heat diffusion. As a novel approach, we propose an adaptation of random subspace method to select random subsets of bins from the original histograms; and by combining the dissimilarity matrices computed by this operation, we enrich the dissimilarity space and show that we can achieve higher accuracies.
2011
9783642248542
dissimilarity space; heat diffusion; random subspace; schizophrenia; support vector machines;
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11562/368249
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 2
social impact